Cho elip \(\left( E \right):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\). Qua một tiêu điểm của \(\left( E \right)\) dựng đường thẳng song song với trục \(Oy\) và cắt \(\left( E \right)\) tại hai điểm \(M\) và \(N\). Tính độ dài \(MN\).
Quảng cáo
Trả lời:
Xét \(\left( E \right):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1 \Rightarrow \left\{ \begin{array}{l}{a^2} = 100\\{b^2} = 36\end{array} \right. \Leftrightarrow {c^2} = {a^2} - {b^2} = 100 - 36 = 64 \Rightarrow c = 8.\)
Khi đó, elip có tiêu điểm là \[{F_1}\left( { - \,8;0} \right)\]\[ \Rightarrow \] đường thẳng \[d\,\,{\rm{//}}\,\,Oy\] và đi qua \[{F_1}\] có phương trình là \[x = - \,8.\]
Giao điểm của \[d\] và \[\left( E \right)\] là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x = - \,8\\\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - \,8\\y = \pm \,\frac{{18}}{5}\end{array} \right..\]
Vậy tọa độ hai điểm \[M\left( { - \,8;\frac{{18}}{5}} \right),\,\,N\left( { - \,8; - \,\frac{{18}}{5}} \right) \Rightarrow MN = \frac{{36}}{5}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét hệ phương trình \(\left\{ \begin{array}{l}x - y = 0\\x - 7y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 0\end{array} \right.\).
Do đó, \({\Delta _1} \cap {\Delta _2} = O\left( {0;0} \right)\). Gọi \(A,\,\,B\) lần lượt là hai tiếp điểm của \(\left( {C'} \right)\) với \({\Delta _1},{\Delta _2}.\)
Ta có tam giác \(OAB\) cân tại \(O\) và \(K\) thuộc đường phân giác của \(\widehat {AOB}\).
Mặt khác, ta chứng minh được phương trình đường phân giác của \(\widehat {AOB}\) là:
\(\frac{{x - y}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \pm \frac{{x - 7y}}{{\sqrt {{1^2} + {{\left( { - 7} \right)}^2}} }} \Leftrightarrow \left[ \begin{array}{l}2x + y = 0\\x - 2y = 0\end{array} \right.\) .
Vì \(K \in \left( C \right)\) nên tọa độ điểm \(K\) là nghiệm của các hệ phương trình
\(\left\{ \begin{array}{l}2x + y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\,\) (Vô nghiệm) và \(\left\{ \begin{array}{l}x - 2y = 0\\{\left( {x - 2} \right)^2} + {y^2} = \frac{4}{5}\end{array} \right.\,\, \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{5}\\y = \frac{4}{5}\end{array} \right.\).
Vậy \(K\left( {\frac{8}{5};\,\frac{4}{5}} \right).\)
Câu 2
Tổng các bình phương các nghiệm của phương trình \[\sqrt { - {x^2} + 2x + 3} = \sqrt {{x^2} - 4x + 3} \] bằng
Lời giải
Đáp án đúng là: D
Bình phương hai vế của phương trình \[\sqrt { - {x^2} + 2x + 3} = \sqrt {{x^2} - 4x + 3} \] ta được:
\( - {x^2} + 2x + 3 = {x^2} - 4x + 3\).
Thu gọn phương trình trên ta được: \(2{x^2} - 6x = 0\). Từ đó suy ra \(x = 0\) hoặc \(x = 3\).
Lần lượt thay các giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy phương trình đã cho có tập nghiệm là \(S = \{0;\,1,3\}\). Khi đó ta có: \({0^2} + {3^2} = 9\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\overrightarrow a = \overrightarrow c \);
B. \(\overrightarrow a = \overrightarrow b \);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(x < - 3\) hoặc \(x > - 1\);
B. \(x < - 1\) hoặc \(x > 3\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.