Câu hỏi:

05/01/2026 41 Lưu

Trong hệ trục tọa độ \(Oxy\), cho điểm \(I\left( {1;1} \right)\) và đường thẳng \(\left( d \right):3x + 4y - 2 = 0\). Đường tròn tâm \(I\) và tiếp xúc với đường thẳng \(\left( d \right)\) có phương trình

A. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 5\);  
B. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 25\);
C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\);    
D. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \frac{1}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Đường tròn tâm \(I\) và tiếp xúc với đường thẳng \(\left( d \right)\) có bán kính

 \(R = d\left( {I,d} \right) = \frac{{\left| {3.1 + 4.1 - 2} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 1\)

Vậy đường tròn có phương trình là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y - 2 = 0}\\{x + 2y - 5 = 0}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\) suy ra \(A\left( {3;1} \right)\)

Gọi \(B\left( {b;\,b - 2} \right)\) và \(C\left( {5 - 2c;\;c} \right)\), \(G\) là trọng tâm tam giác \(ABC\) nên \(b,\;c\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{5 - 2c + b + 3 = 9}\\{c + b - 2 + 1 = 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b = 5}\\{c = 2}\end{array}} \right.\).

Vậy \[B(5;3);\,C(1;2)\]\[ \Rightarrow \overrightarrow {BC}  = \left( { - 4; - 1} \right)\]

Phương trình đường thẳng \(BC\) đi qua \(B\left( {1;2} \right)\) có vectơ pháp tuyến là \(\overrightarrow n \left( {1; - 4} \right)\)  có dạng \(BC:1\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow BC:x - 4y + 7 = 0\).

Vậy ta có \(m =  - 4;n = 7 \Rightarrow m + n = 3\).

Lời giải

Đáp án đúng là: C

Gọi số cần tìm có dạng \[\overline {ab} \]

Vì \(a,b\) đều là số chẵn nên

\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))

\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))

Như vậy, ta có \[4.5 = 20\] số cần tìm.

Câu 4

A. \(S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\);    
B. \(S = \mathbb{R}\); 
C. \[S = \left( {2; + \infty } \right)\];  
D. \(S = \left( { - \infty ; - 2} \right) \cup \left( { - 2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hàm số nghịch biến trên khoảng \[\left( {0;3} \right)\];

B. Hàm số đồng biến trên khoảng \[\left( { - \infty ;1} \right)\];

C. Hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\];

D. Hàm số đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP