Trong mặt phẳng \[Oxy\], cho \(\Delta ABC\) nội tiếp đường tròn tâm \(I\left( {2;\,\,2} \right)\), điểm \(D\) là chân đường phân giác ngoài của góc \[\widehat {BAC}\]. Đường thẳng \(AD\) cắt đường tròn ngoại tiếp \(\Delta \,ABC\) tại điểm thứ hai là \(M\) . Biết điểm \(J\left( { - 2;\,\,2} \right)\) là tâm đường tròn ngoại tiếp \(\Delta \,ACD\) và phương trình đường thẳng \(CM\) là: \(x + y - 2 = 0.\) Tìm tổng hoành độ của các đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] của tam giác \(ABC\).
Trong mặt phẳng \[Oxy\], cho \(\Delta ABC\) nội tiếp đường tròn tâm \(I\left( {2;\,\,2} \right)\), điểm \(D\) là chân đường phân giác ngoài của góc \[\widehat {BAC}\]. Đường thẳng \(AD\) cắt đường tròn ngoại tiếp \(\Delta \,ABC\) tại điểm thứ hai là \(M\) . Biết điểm \(J\left( { - 2;\,\,2} \right)\) là tâm đường tròn ngoại tiếp \(\Delta \,ACD\) và phương trình đường thẳng \(CM\) là: \(x + y - 2 = 0.\) Tìm tổng hoành độ của các đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] của tam giác \(ABC\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
\(\left( 1 \right)\)\(\widehat {BCM} = \widehat {BAM}\)
\(\widehat {BAM} = \widehat {MAT} = \widehat {DAC}\) \(\left( 2 \right)\)
Từ \(\left( 1 \right),\,\,\left( 2 \right)\) suy ra \(\widehat {DAC} = \widehat {BCM}\), mà \(\widehat {BCM} = \widehat {CDA} + \widehat {AMC},\,\,\widehat {DAC} = \widehat {ACM} + \widehat {AMC}\) từ đó suy ra \(\widehat {CDA} = \widehat {ACM}\), do đó\(MC\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(ACD\) có tâm \(J\) nên \(JC \bot MC\). Hay \(C\) là hình chiếu của \(J\) lên đường thẳng \(CM\).
Đường thẳng qua \(J\) và vuông góc với \(CM\) có phương trình:
\(\left( {x + 2} \right) - \left( {y - 2} \right) = 0 \Leftrightarrow x - y + 4 = 0\)
Tọa độ điểm \(C\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x + y = 2\\x - y = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 3\end{array} \right. \Rightarrow C\left( { - 1;\,\,3} \right)\).
\(AC\) là đường thẳng qua \(C\) và có vectơ pháp tuyến là \(\overrightarrow {IJ} \left( { - 4;\,\,0} \right)\) nên có phương trình: \( - 4\left( {x + 1} \right) + 0\left( {y - 3} \right) = 0 \Leftrightarrow x + 1 = 0\).
Do đó tọa độ điểm \(A\) có dạng \(A\left( { - 1;\,\,a} \right)\). Ta có
\(I{A^2} = I{C^2} \Leftrightarrow 9 + {\left( {a - 2} \right)^2} = 9 + 1 \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = 3\end{array} \right.\).
Vì \(A \ne C\) nên \(A\left( { - 1;\,\,1} \right)\).
Tọa độ điểm \(M\) có dạng \(M\left( {m;\,\,2 - m} \right)\). Ta có
\(I{M^2} = I{C^2} \Leftrightarrow {\left( {m - 2} \right)^2} + {m^2} = 10 \Leftrightarrow {m^2} - 2m - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 3\end{array} \right.\).
Vì \(M \ne C\) nên \(M\left( {3;\,\, - 1} \right)\).
\(BC\) là đường thẳng qua \(C\) và có vectơ pháp tuyến là \(\overrightarrow {MI} \left( { - 1;\,\,3} \right)\) nên có phương trình:
\( - \left( {x + 1} \right) + 3\left( {y - 3} \right) = 0 \Leftrightarrow x - 3y + 10 = 0\).
Tọa độ điểm \(B\) có dạng \(B\left( {3b - 10;\,\,b} \right)\). Ta có
\(I{B^2} = I{C^2} \Leftrightarrow {\left( {3b - 12} \right)^2} + {\left( {b - 2} \right)^2} = 10 \Leftrightarrow \left[ \begin{array}{l}b = 3\\b = \frac{{23}}{5}\end{array} \right.\).
Vì \(B \ne C\) nên \(B\left( {\frac{{19}}{5};\,\,\frac{{23}}{5}} \right)\).
Vậy tổng hoành độ của các đỉnh \(A,\,\,B,\,\,C\) là \( - 1 - 1 + \frac{{19}}{5} = \frac{9}{5}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{x - y - 2 = 0}\\{x + 2y - 5 = 0}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\) suy ra \(A\left( {3;1} \right)\)
Gọi \(B\left( {b;\,b - 2} \right)\) và \(C\left( {5 - 2c;\;c} \right)\), \(G\) là trọng tâm tam giác \(ABC\) nên \(b,\;c\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{5 - 2c + b + 3 = 9}\\{c + b - 2 + 1 = 6}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b = 5}\\{c = 2}\end{array}} \right.\).
Vậy \[B(5;3);\,C(1;2)\]\[ \Rightarrow \overrightarrow {BC} = \left( { - 4; - 1} \right)\]
Phương trình đường thẳng \(BC\) đi qua \(B\left( {1;2} \right)\) có vectơ pháp tuyến là \(\overrightarrow n \left( {1; - 4} \right)\) có dạng \(BC:1\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow BC:x - 4y + 7 = 0\).
Vậy ta có \(m = - 4;n = 7 \Rightarrow m + n = 3\).
Câu 2
Lời giải
Đáp án đúng là: C
Gọi số cần tìm có dạng \[\overline {ab} \]
Vì \(a,b\) đều là số chẵn nên
\[a\] có \(4\) cách chọn (vì \(a\) được chọn từ một trong bốn số \(2;4;6;8\))
\[b\] có \(5\) cách chọn (vì \(b\) được chọn từ một trong năm số \(0;2;4;6;8\))
Như vậy, ta có \[4.5 = 20\] số cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Hàm số nghịch biến trên khoảng \[\left( {0;3} \right)\];
B. Hàm số đồng biến trên khoảng \[\left( { - \infty ;1} \right)\];
C. Hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\];
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
