Câu hỏi:

05/01/2026 7 Lưu

Cho Hypebol \(\left( H \right):\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) và đường thẳng \(\Delta :x + y = 3\). Tích các khoảng cách từ hai tiêu điểm của \(\left( H \right)\) đến \(\Delta \) bằng giá trị nào sau đây?

A. \(16\); 
B. \(8\); 
C. \(64\);  
D. \(7\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 9\end{array} \right.\)

Ta có \({c^2} = {a^2} + {b^2} = 16 + 9 = 25\).

Suy ra \(c = 5\).

Khi đó hai tiêu điểm của \(\left( H \right)\) là \(\overrightarrow {{F_1}} \left( { - 5;0} \right),\overrightarrow {{F_2}} \left( {5;0} \right)\).

Ta có \(\Delta :x + y = 3 \Leftrightarrow x + y - 3 = 0\).

Ta có \(d\left( {{F_1},\Delta } \right) = \frac{{\left| { - 5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2 \) và \[d\left( {{F_2},\Delta } \right) = \frac{{\left| {5 + 0 - 3} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2 \].

Khi đó tích các khoảng cách từ hai tiêu điểm của \(\left( H \right)\) đến \(\Delta \) là: \(4\sqrt 2 .\sqrt 2  = 8\).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có sơ đồ sau:

Dãy ghế thứ nhất

1

2

3

4

Dãy ghế thứ hai

5

6

7

8

Ở ghế 1: có \(8\) cách chọn học sinh ngồi vào ghế

Ở ghế 5: có \(4\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 2: có \(6\) cách chọn học sinh ngồi vào ghế

Ở ghế 6: có \(3\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 3: có \(4\) cách chọn học sinh ngồi vào ghế

Ở ghế 7: có \(2\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Ở ghế 4: có \(2\) cách chọn học sinh ngồi vào ghế

Ở ghế 8: có \(1\) cách chọn học sinh ngồi vào ghế (khác trường với học sinh ghế 1).

Vậy có: \(8.4.6.3.4.2.2.1 = 9\,\,216\) cách xếp sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau.

Câu 2

A. Trục \(Oy\);  
B. Trục \(Ox\);  
C. Đường thẳng \(y = x\);
D. Hàm số không có trục đối xứng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hàm số bậc hai \(y = {x^2}\) có trục đối xứng \(x =  - \frac{b}{{2a}} =  - \frac{0}{{2.1}} = 0\).

Vì vậy trục đối xứng là \(Oy\).

Câu 3

A. \(n.k\);  
B. \(n\left( {n - 1} \right)\left( {n - 2} \right)...\left( {n - k + 1} \right)\); 
C.\(\frac{n}{k}\); 
D.\(\frac{k}{n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {1;2} \right)\);   
B. \(\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\);    
C. \(\left( { - \infty ;1} \right)\);  
D. \(\left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {a + b} \right)^4} = C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} + C_4^3a.{b^3} + C_4^4.{b^4}\);
B. \({\left( {a + b} \right)^4} = C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\); 
C. \({\left( {a + b} \right)^4} = C_4^0{a^4} - C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} - C_4^3a.{b^3} + C_4^4.{b^4}\);  
D. \({\left( {a + b} \right)^4} =  - C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\). 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(0 \le P\left( A \right)\) hoặc \(P\left( A \right) \ge 1\);

B. \(P\left( A \right) - P\left( {\overline A } \right) = 1\);

C. \(0 \le P\left( {\overline A } \right) \le 1\);  
D. \(P\left( A \right) = P\left( {\overline A } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP