Câu hỏi:

06/01/2026 135 Lưu

Số hạng không chứa \[x\] trong khai triển nhị thức Newton của \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là

A. \(1\);  
B. \(4\);    
C. \(6\);
D. \(12\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Ta có

\({\left( {\frac{1}{x} + {x^3}} \right)^4} = C_4^0{\left( {\frac{1}{x}} \right)^4}{\left( {{x^3}} \right)^0} + C_4^1{\left( {\frac{1}{x}} \right)^3}{\left( {{x^3}} \right)^1} + C_4^2{\left( {\frac{1}{x}} \right)^2}{\left( {{x^3}} \right)^2} + C_4^3{\left( {\frac{1}{x}} \right)^1}{\left( {{x^3}} \right)^3} + C_4^4{\left( {\frac{1}{x}} \right)^0}{\left( {{x^3}} \right)^4}\)\( = \frac{1}{{{x^4}}} + 4 + 6{x^4} + 4{x^8} + {x^{12}}\)

Vậy số hạng không chứa \[x\] trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là \[4\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y - 4 = 0\);
B. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
C. \(3x - 4y + 6 = 0\) hoặc \(3x - 4y + 4 = 0\);
D. \(3x - 4y - 6 = 0\) hoặc \(3x - 4y - 4 = 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì \(\Delta \parallel d \Rightarrow \Delta :3x - 4y + c = 4\)

Lấy điểm \(M\left( {1;1} \right) \in d\) khi đó \({d_{\left( {d;\Delta } \right)}} = {d_{\left( {M;\Delta } \right)}} = \frac{{\left| {3.1 - 4.1 + c} \right|}}{5} = 1\)

\( \Leftrightarrow \frac{{\left| {c - 1} \right|}}{5} = 1 \Leftrightarrow \left[ \begin{array}{l}c - 1 = 5\\c - 1 =  - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 6\\c =  - 4\end{array} \right.\) .

Phương trình đường thẳng \(\Delta :3x - 4y + 6 = 0\) hoặc \(\Delta :3x - 4y - 4 = 0\).

Lời giải

Hướng dẫn giải

a) Xét \(C_{14}^x + C_{14}^{x + 2} = 2C_{14}^{x + 1}\left( {x \le 12} \right)\)

\( \Leftrightarrow \frac{{14!}}{{x!\left( {14 - x} \right)!}} + \frac{{14!}}{{\left( {x + 2} \right)!.\left( {14 - x - 2} \right)!}} = 2\frac{{14!}}{{\left( {x + 1} \right)!\left( {14 - x - 1} \right)!}}\)

\( \Leftrightarrow \frac{{14!}}{{x!\left( {14 - x} \right)!}} + \frac{{14!}}{{\left( {x + 2} \right)!.\left( {12 - x} \right)!}} = 2\frac{{14!}}{{\left( {x + 1} \right)!\left( {13 - x} \right)!}}\)

\( \Leftrightarrow \frac{{14!}}{{x!\left( {12 - x} \right)!}}\left( {\frac{1}{{\left( {14 - x} \right)\left( {13 - x} \right)}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}}} \right) = 2.\frac{{14!}}{{x!\left( {12 - x} \right)!}}.\frac{1}{{\left( {x + 1} \right).\left( {13 - x} \right)}}\)

\( \Leftrightarrow \frac{1}{{\left( {14 - x} \right)\left( {13 - x} \right)}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = \frac{2}{{\left( {x + 1} \right).\left( {13 - x} \right)}}\)

\[ \Leftrightarrow \left( {x + 2} \right)\left( {x + 1} \right) + \left( {14 - x} \right)\left( {13 - x} \right) = 2\left( {14 - x} \right)\left( {x + 2} \right)\]

\[ \Leftrightarrow {x^2} + 3x + 2 + {x^2} - 27x + 182 =  - 2{x^2} + 24x + 56\]

\[ \Leftrightarrow 4{x^2} - 48x + 128 = 0\]

\[ \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = 8\end{array} \right.\] (thỏa mãn điều kiện)

Vậy tích \(P = 4.8 = 32\).

b) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

20      20      22      25      25      30      33      38      40      90

Vì mẫu số liệu gồm 10 số liệu (là số chẵn) nên trung vị của mẫu số liệu là trung bình cộng của hai số chính giữa, là số ở vị trí thứ 5 và thứ 6. Do đó, trung vị của mẫu số liệu hay tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = \frac{{25 + 30}}{2} = 27,5\).

Tứ phân vị thứ nhất là trung vị của dãy: 20      20     22      25      25.

Do đó, \({Q_1} = 22\).

Tứ phân vị thứ ba là trung vị của dãy: 30         33      38      40      90.

Do đó, \({Q_3} = 38\).

Khoảng tứ phân vị của mẫu số liệu là \({\Delta _Q} = {Q_3} - {Q_1} = 38 - 22 = 16\).

Ta có: \({Q_1} - 1,5{\Delta _Q} = 22 - 1,5 \cdot 16 =  - 2\); \({Q_3} + 1,5{\Delta _Q} = 38 + 1,5 \cdot 16 = 62\).

Trong mẫu số liệu đã cho có giá trị 90 lớn hơn 62.

Vậy mẫu số liệu đã cho có giá trị bất thường là 90.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 40,3;    
B. 48;  
C. 49; 
D. 50.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{1}{{12}}\];    
B. \[\frac{1}{{18}}\];    
C. \[\frac{1}{{20}}\];    
D. \[\frac{1}{{36}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP