Trong một hộp có \(10\) viên bi đánh số từ \(1\) đến \(10\), lấy ngẫu nhiên ra hai bi. Tính xác suất để hai bi lấy ra có tích hai số trên chúng là một số lẻ.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Số phần tử của không gian mẫu: \(n\left( \Omega \right) = C_{10}^2\).
Gọi biến cố \(A\): “Hai bi lấy ra có tích hai số trên chúng là một số lẻ”.
Vì tích hai số là số lẻ nên hai số được chọn phải được đánh số lẻ nên ta chọn \(2\) trong \(5\) viên bi đánh số lẻ.
Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_5^2\).
Vậy \(P\left( A \right) = \frac{{C_5^2}}{{C_{10}^2}} = \frac{2}{9}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có
\({\left( {\frac{1}{x} + {x^3}} \right)^4} = C_4^0{\left( {\frac{1}{x}} \right)^4}{\left( {{x^3}} \right)^0} + C_4^1{\left( {\frac{1}{x}} \right)^3}{\left( {{x^3}} \right)^1} + C_4^2{\left( {\frac{1}{x}} \right)^2}{\left( {{x^3}} \right)^2} + C_4^3{\left( {\frac{1}{x}} \right)^1}{\left( {{x^3}} \right)^3} + C_4^4{\left( {\frac{1}{x}} \right)^0}{\left( {{x^3}} \right)^4}\)\( = \frac{1}{{{x^4}}} + 4 + 6{x^4} + 4{x^8} + {x^{12}}\)
Vậy số hạng không chứa \[x\] trong khai triển \({\left( {\frac{1}{x} + {x^3}} \right)^4}\) là \[4\].
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì \(\Delta \parallel d \Rightarrow \Delta :3x - 4y + c = 4\)
Lấy điểm \(M\left( {1;1} \right) \in d\) khi đó \({d_{\left( {d;\Delta } \right)}} = {d_{\left( {M;\Delta } \right)}} = \frac{{\left| {3.1 - 4.1 + c} \right|}}{5} = 1\)
\( \Leftrightarrow \frac{{\left| {c - 1} \right|}}{5} = 1 \Leftrightarrow \left[ \begin{array}{l}c - 1 = 5\\c - 1 = - 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 6\\c = - 4\end{array} \right.\) .
Phương trình đường thẳng \(\Delta :3x - 4y + 6 = 0\) hoặc \(\Delta :3x - 4y - 4 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.