Cho tam thức bậc hai \(f\left( x \right)\) có bảng xét dấu như sau:

Tập nghiệm của bất phương trình \(f\left( x \right) \le 0\) là
A. \(S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\).
B. \(S = \left( { - 2;3} \right)\).
Câu hỏi trong đề: Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Dựa vào bảng xét dấu, ta có \(f\left( x \right) \le 0\)\( \Leftrightarrow x \in \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\).
Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\). Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(f\left( x \right) > 0,\forall x \in \left( { - \infty ; - 4} \right) \cup \left( {0; + \infty } \right)\).
B. \(f\left( x \right) \le 0,\forall x \in \left( { - 4;0} \right)\).
Lời giải
Dựa vào đồ thị ta thấy \(f\left( x \right) > 0,\forall x \in \left( { - \infty ; - 4} \right) \cup \left( {0; + \infty } \right)\). Chọn A.
Câu 2
A. \(S = \left( { - \infty ; - 1} \right] \cup \left[ {5; + \infty } \right)\).
B. \(S = \left[ { - 5;1} \right]\).
Lời giải
Ta có \( - {x^2} + 4x + 5 \ge 0\)\( \Leftrightarrow - 1 \le x \le 5\).
Vậy \(S = \left[ { - 1;5} \right]\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
