Câu hỏi:

07/01/2026 8 Lưu

Cho đường tròn \(\left( C \right):{x^2} + {y^2} - 4 = 0\) và điểm \(A\left( { - 1;2} \right)\). Đường thẳng nào trong các đường thẳng dưới đây đi qua \(A\) và là tiếp tuyến của đường tròn \(\left( C \right)\)?

A. \(4x - 3y + 10 = 0\); 
B. \(6x + y + 4 = 0\);
C. \(3x + 4y + 10 = 0\);
D. \(3x - 4y + 11 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Đường tròn \(\left( C \right)\) có tâm là gốc tọa độ \(O\left( {0;0} \right)\) và có bán kính \(R = 2\).

Họ đường thẳng \(\Delta \) qua\(A\left( { - 1;2} \right)\) là \(a\left( {x + 1} \right) + b\left( {y - 2} \right) = 0\), với \({a^2} + {b^2} \ne 0\).

Vì \(\Delta \) là tiếp tuyến của đường tròn nên: \({d_{\left( {O;\Delta } \right)}} = R\) hay \(\frac{{\left| {a - 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow {\left( {a - 2b} \right)^2} = 4\left( {{a^2} + {b^2}} \right)\)\( \Leftrightarrow 3{a^2} + 4ab = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0\\3a =  - 4b\end{array} \right.\).

Với \(a = 0\), chọn \(b = 1\) ta có \({\Delta _1}:y - 2 = 0\).

Với \(3a =  - 4b\), chọn \(a = 4\) và \(b =  - 3\) ta có :

\({\Delta _2}:4\left( {x + 1} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 4x - 3y + 10 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), G (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Câu 2

A. \[S = \left( { - \infty ;2} \right) \cup \left( {2; + \infty } \right)\];   
B. \(S = \mathbb{R}\);
C. \[S = \left( {2; + \infty } \right)\];  
D. \(S = \mathbb{R}\backslash \left\{ { - 2} \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta thức \(f\left( x \right) = {x^2} - 4x + 4\) có \(\Delta  = 0,\,a = 1 > 0\) nên \(f\left( x \right)\) có nghiệm duy nhất \(x = 2\)Do đó ta có bảng xét dấu \(f\left( x \right)\):

Tập nghiệm S của bất phương trình (x^2)- 4x + 4 lớn hơn hoặc bằng 0 là (ảnh 1)

Do đó tập nghiệm \(S\) của bất phương trình là: \(S = \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {5; - 3} \right)\];  
B. \[\left( {6;2} \right)\];  
C. \[\left( { - 1;3} \right)\];
D. \[\left( { - 5;3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP