Câu hỏi:

07/01/2026 64 Lưu

Có \(5\) nhà toán học nam, \(3\) nhà toán học nữ và \(4\) nhà vật lý nam. Lập một đoàn công tác gồm \(3\) người cần có cả nam và nữ, có cả nhà toán học và vật lý thì có bao nhiêu cách.

A. \(220\);  
B. \(90\);   
C. \(96\);  
D. \(60\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Chọn ra \(3\) người có cả nam và nữ, có cả nhà toán học và vật lý ta có các trường hợp sau:

Trường hợp 1: Chọn được \(1\) nhà vật lý nam, \(2\) nhà toán học nữ có \(C_4^1C_3^2 = 18\) cách chọn.

Trường hợp 2: Chọn được \(1\) nhà vật lý nam, \(1\) nhà toán học nữ và \(1\) nhà toán học nam có \(C_4^1C_3^1C_5^1 = 60\) cách chọn.

Trường hợp 3: Chọn được \(2\) nhà vật lý nam, \(1\) nhà toán học nữ có \(C_4^2C_3^1 = 18\) cách chọn.

Vậy, có \(18 + 60 + 18 = 96\) cách chọn thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác ABC biết H (3;2), G (5/3;8/3) lần lượt là trực tâm và trọng tâm của tam giác, đường thẳng BC có phương trình x + 2y - 2 = 0. Tìm phương trình đường tròn ngoại tiếp tam giác ABC? (ảnh 1)

Gọi \(I\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow \overrightarrow {HI}  = \frac{3}{2}\overrightarrow {HG}  \Rightarrow \left\{ \begin{array}{l}{x_I} - 3 = \frac{3}{2}\left( {\frac{5}{3} - 3} \right)\\{y_I} - 2 = \frac{3}{2}\left( {\frac{8}{3} - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_I} = 1\\{y_I} = 3\end{array} \right. \Rightarrow I\left( {1;3} \right)\).

Gọi \(M\) là trung điểm của \(BC\) \( \Rightarrow IM \bot BC\) \( \Rightarrow IM:2x - y + c = 0\).

Vì \(I \in IM \Rightarrow 2.1 - 3 + c = 0 \Rightarrow c = 1\)

\( \Rightarrow IM:2x - y + 1 = 0\)

\(M = IM \cap BC \Rightarrow \left\{ \begin{array}{l}2x - y =  - 1\\x + 2y = 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right. \Rightarrow M\left( {0;1} \right)\).

Lại có: \(\overrightarrow {MA}  = 3\overrightarrow {MG}  \Rightarrow \left\{ \begin{array}{l}{x_A} = 3.\frac{5}{3}\\{y_A} - 1 = 3.\left( {\frac{8}{3} - 1} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = 5\\{y_A} = 6\end{array} \right. \Rightarrow A\left( {5;6} \right)\)  .

Suy ra: đường tròn ngoại tiếp tam giác \(ABC\) là đường tròn tâm \(I\left( {1;3} \right)\) bán kính \(R = IA = 5\).

Vậy phương trình đường tròn ngoại tiếp tam giác \(ABC\) là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 25\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Điều kiện tồn tại căn: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\).

Để phương trình có nghiệm thì \(5 - m \ge 0 \Leftrightarrow m \le 5\).

Khi đó \(\sqrt {x - 1}  = 5 - m \Leftrightarrow x - 1 = {\left( {5 - m} \right)^2}\)suy ra phương trình có nghiệm là \(x = {(5 - m)^2} + 1 \ge 1\) với mọi \(m\).

Vậy các giá trị nguyên dương của tham số \(m\) để phương trình có nghiệm là: \(m \in \left\{ {1;2;3;4;5} \right\}\).

Vậy có \(5\) giá trị của \(m\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(I\left( {1;1} \right)\);  
B. \(I\left( {0;0} \right)\); 
C. \(I\left( {1;2} \right)\);   
D. \(I\left( {1;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP