Câu hỏi:

07/01/2026 7 Lưu

Khoảng cách nhỏ nhất từ điểm\(M\left( {15;1} \right)\) đến một điểm bất kì thuộc đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y = t\end{array} \right.\)

A. \(\sqrt {10} \).              
B. \(\frac{{16}}{{\sqrt 5 }}\).                                    
C. \(\frac{1}{{\sqrt {10} }}\).    
D. \(\sqrt 5 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(\Delta \) có dạng tổng quát là \(x - 3y - 2 = 0\).

Khoảng cách nhỏ nhất từ điểm \(M\) đến một điểm bất kì thuộc đường thẳng \(\Delta \) chính là khoảng cách từ điểm \(M\) đến hình chiếu của \(M\) trên đường thẳng \(\Delta \) và bằng \(d\left( {M,\Delta } \right) = \frac{{\left| {15 - 3 - 2} \right|}}{{\sqrt {1 + {{\left( { - 3} \right)}^2}} }} = \sqrt {10} \). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

a) \(\overrightarrow {BC}  = \left( {0; - 4} \right)\).

b) Tọa độ trung điểm của \(AB\)\(\left\{ \begin{array}{l}x = \frac{{0 + 3}}{2} = \frac{3}{2}\\y = \frac{{1 + 1}}{2} = 1\end{array} \right.\).

c) Có \(\overrightarrow {AB} = \left( {3;0} \right),\overrightarrow {AC} = \left( {3; - 4} \right)\).

Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 3 + 0 \cdot \left( { - 4} \right) = 9\).

d)

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) biết A{ 0;1} (ảnh 1)

Theo tính chất tia phân giác, \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{5}\).

\(\overrightarrow {DB} \)\(\overrightarrow {DC} \) là hai vectơ ngược hướng nên \(\overrightarrow {DB} = - \frac{3}{5}\overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}3 - a = - \frac{3}{5}\left( {3 - a} \right)\\1 - b = - \frac{3}{5}\left( { - 3 - b} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\end{array} \right.\).

Suy ra \(a + b = 2,5\).

Đáp án: a) Đúng;    b) Đúng;     c) Sai;     d) Đúng.

Lời giải

Gọi \(I\left( {x;y} \right)\) là điểm sao cho \(\overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \).

Ta có \(\overrightarrow {IA} = \left( {1 - x; - 4 - y} \right),\overrightarrow {IB} = \left( { - 2 - x;2 - y} \right),\overrightarrow {IC} = \left( { - 5 - x;4 - y} \right)\).

Theo bài ta có \(\overrightarrow {IA}  + 2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \) nên \(\left\{ \begin{array}{l}1 - x + 2\left( { - 2 - x} \right) + 3\left( { - 5 - x} \right) = 0\\ - 4 - y + 2\left( {2 - y} \right) + 3\left( {4 - y} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1 - x - 4 - 2x - 15 - 3x = 0\\ - 4 - y + 4 - 2y + 12 - 3y = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 6x - 18 = 0\\ - 6y + 12 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 2\end{array} \right.\)\( \Rightarrow I\left( { - 3;2} \right)\).

Ta có \(\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} = \overrightarrow {MI} + \overrightarrow {IA} + 2\overrightarrow {MI} + 2\overrightarrow {IB} + 3\overrightarrow {MI} + 3\overrightarrow {IC} \)\( = 6\overrightarrow {MI} + \overrightarrow {IA} + 2\overrightarrow {IB} + 3\overrightarrow {IC} = 6\overrightarrow {MI} \).

Do \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right| = 6\left| {\overrightarrow {MI} } \right|\) nhỏ nhất khi \(MI\) nhỏ nhất.

Lại có \(M \in Ox\) nên \(MI\) nhỏ nhất khi \(M\) là hình chiếu của \(I\left( { - 3;2} \right)\) trên \(Ox\).

Suy ra tọa độ \(M\left( { - 3;0} \right)\). Vậy \(T = - 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).

Đúng
Sai

b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\)\(H\left( { - 1; - 4} \right)\).

Đúng
Sai

c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).

Đúng
Sai
d) Tọa độ điểm \(M\) thỏa mãn \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \)\(\left( { - 7;0} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(60^\circ \).                 
B. \(135^\circ \).               
C. \(120^\circ \).              
D. \(45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP