Câu hỏi:

07/01/2026 29 Lưu

Khoảng cách nhỏ nhất từ điểm\(M\left( {15;1} \right)\) đến một điểm bất kì thuộc đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y = t\end{array} \right.\)

A. \(\sqrt {10} \).              
B. \(\frac{{16}}{{\sqrt 5 }}\).                                    
C. \(\frac{1}{{\sqrt {10} }}\).    
D. \(\sqrt 5 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(\Delta \) có dạng tổng quát là \(x - 3y - 2 = 0\).

Khoảng cách nhỏ nhất từ điểm \(M\) đến một điểm bất kì thuộc đường thẳng \(\Delta \) chính là khoảng cách từ điểm \(M\) đến hình chiếu của \(M\) trên đường thẳng \(\Delta \) và bằng \(d\left( {M,\Delta } \right) = \frac{{\left| {15 - 3 - 2} \right|}}{{\sqrt {1 + {{\left( { - 3} \right)}^2}} }} = \sqrt {10} \). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {AB} = \left( {0;48} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\) nên \(\overrightarrow {{n_1}} = \left( {1;0} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Ta có \(\overrightarrow {AC} = \left( {37;48} \right)\)là một vectơ chỉ phương của đường thẳng \(AC\) nên \(\overrightarrow {{n_2}} = \left( { - 48;37} \right)\) là một vectơ pháp tuyến của đường thẳng \(AC\).

Góc lệch của Phà với lúc dự tính ban đầu chính là góc giữa hai đường thẳng \(AB\)\(AC\).

Ta có \(\cos \left( {AB,AC} \right) = \frac{{\left| {1 \cdot \left( { - 48} \right) + 0 \cdot 37} \right|}}{{\sqrt {{1^2} + {0^2}} \cdot \sqrt {{{\left( { - 48} \right)}^2} + {{37}^2}} }} = \frac{{48}}{{\sqrt {3673} }}\)\( \Rightarrow \widehat A \approx 38^\circ \).

Lời giải

\(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).

\(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).

Câu 3

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left\{ \begin{array}{l}x = 1 - 4t\\y = 2 + 3t\end{array} \right.\).             
B. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\end{array} \right.\).                      
C. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 4 + t\end{array} \right.\).                     
D. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 - 4t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP