Câu hỏi:

07/01/2026 35 Lưu

Trong hệ trục tọa độ \(Oxy\), cho hai điểm \(A\left( {3;0} \right),B\left( {2; - 1} \right)\) và đường thẳng \(\Delta :2x - y + 8 = 0\).

a) Phương trình chính tắc của Elip đi qua hai điểm \(A\)\(B\)\(\frac{{{x^2}}}{{4,5}} + \frac{{{y^2}}}{9} = 1\).

Đúng
Sai

b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\)\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).

Đúng
Sai

c) Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \)\({x^2} + {\left( {y - 3} \right)^2} = 5\).

Đúng
Sai
d) Đường tròn \(\left( C \right)\) đi qua hai điểm \(A,B\) và có tâm \(I\) nằm trên \(\Delta \) có bán kính là \(\sqrt 5 \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Giả sử \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Vì Elip đi qua hai điểm \(A\)\(B\) nên \(\left\{ \begin{array}{l}\frac{9}{{{a^2}}} = 1\\\frac{4}{{{a^2}}} + \frac{1}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 1,8\end{array} \right.\).

Vậy \(\left( E \right):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{{1,8}} = 1\).

b) Phương trình đường tròn tâm \(B\) và có bán kính \(R = 6\)\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = 36\).

c) \(R = d\left( {B,\Delta } \right) = \frac{{\left| {2 \cdot 2 - \left( { - 1} \right) + 8} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{13}}{{\sqrt 5 }}\).

Phương trình đường tròn tâm \(B\) và tiếp xúc với \(\Delta \)\({\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} = \frac{{169}}{5}\).

d) Gọi \(I\left( {a;b} \right)\) là tâm của đường tròn \(\left( C \right)\).

Theo đề ta có \(\left\{ \begin{array}{l}IA = IB\\I \in \Delta \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}I{A^2} = I{B^2}\\I \in \Delta \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {3 - a} \right)^2} + {b^2} = {\left( {2 - a} \right)^2} + {\left( { - 1 - b} \right)^2}\\2a - b + 8 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a + 2b = 4\\2a - b = - 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 4\end{array} \right.\)

Vậy \(I\left( { - 2;4} \right)\). Suy ra \(R = IA = \sqrt {{{\left( {3 + 2} \right)}^2} + {4^2}} = \sqrt {41} \).

Đáp án: a) Sai;    b) Đúng;   c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {AB} = \left( {0;48} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\) nên \(\overrightarrow {{n_1}} = \left( {1;0} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Ta có \(\overrightarrow {AC} = \left( {37;48} \right)\)là một vectơ chỉ phương của đường thẳng \(AC\) nên \(\overrightarrow {{n_2}} = \left( { - 48;37} \right)\) là một vectơ pháp tuyến của đường thẳng \(AC\).

Góc lệch của Phà với lúc dự tính ban đầu chính là góc giữa hai đường thẳng \(AB\)\(AC\).

Ta có \(\cos \left( {AB,AC} \right) = \frac{{\left| {1 \cdot \left( { - 48} \right) + 0 \cdot 37} \right|}}{{\sqrt {{1^2} + {0^2}} \cdot \sqrt {{{\left( { - 48} \right)}^2} + {{37}^2}} }} = \frac{{48}}{{\sqrt {3673} }}\)\( \Rightarrow \widehat A \approx 38^\circ \).

Lời giải

\(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).

\(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).

Câu 3

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left\{ \begin{array}{l}x = 1 - 4t\\y = 2 + 3t\end{array} \right.\).             
B. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\end{array} \right.\).                      
C. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 4 + t\end{array} \right.\).                     
D. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 - 4t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(M\left( {5;4} \right)\).                                        
B. \(M\left( { - 5;4} \right)\).     
C. \(M\left( { - 5; - 4} \right)\).                                  
D. \(M\left( {5; - 4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP