Một vận động viên ném đĩa đã vung đĩa theo một đường tròn \(\left( C \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 8\). Khi đó, người đó vung đĩa đến vị trí điểm \(M\left( {3;4} \right)\) thì buông đĩa. Biết phương trình tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) tại điểm \(M\) có dạng \(mx + y + n = 0\). Tính giá trị biểu thứ \(P = 2025m + n.\)
Một vận động viên ném đĩa đã vung đĩa theo một đường tròn \(\left( C \right)\) có phương trình là \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 8\). Khi đó, người đó vung đĩa đến vị trí điểm \(M\left( {3;4} \right)\) thì buông đĩa. Biết phương trình tiếp tuyến \(d\) của đường tròn \(\left( C \right)\) tại điểm \(M\) có dạng \(mx + y + n = 0\). Tính giá trị biểu thứ \(P = 2025m + n.\)
Quảng cáo
Trả lời:
Đáp án:
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;2} \right)\) và \(R = 2\sqrt 2 \).
Tiếp tuyến của đường tròn tại \(M\) nhận \(\overrightarrow {IM} = \left( {2;2} \right)\) làm vectơ pháp tuyến có phương trình là
\(2\left( {x - 3} \right) + 2\left( {y - 4} \right) = 0\)\( \Leftrightarrow 2x + 2y - 14 = 0\)\( \Leftrightarrow x + y - 7 = 0\).
Suy ra \(m = 1;n = - 7\). Do đó \(P = 2025m + n = 2018\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Tọa độ của \(\overrightarrow {BC} \) là \(\left( {0; - 4} \right)\).
b) Tọa độ trung điểm của \(AB\) là \(\left( {\frac{3}{2};1} \right)\).
c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).
Lời giải
a) \(\overrightarrow {BC} = \left( {0; - 4} \right)\).
b) Tọa độ trung điểm của \(AB\) là \(\left\{ \begin{array}{l}x = \frac{{0 + 3}}{2} = \frac{3}{2}\\y = \frac{{1 + 1}}{2} = 1\end{array} \right.\).
c) Có \(\overrightarrow {AB} = \left( {3;0} \right),\overrightarrow {AC} = \left( {3; - 4} \right)\).
Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 3 + 0 \cdot \left( { - 4} \right) = 9\).
d)

Theo tính chất tia phân giác, \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{5}\).
Mà \(\overrightarrow {DB} \) và \(\overrightarrow {DC} \) là hai vectơ ngược hướng nên \(\overrightarrow {DB} = - \frac{3}{5}\overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}3 - a = - \frac{3}{5}\left( {3 - a} \right)\\1 - b = - \frac{3}{5}\left( { - 3 - b} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\end{array} \right.\).
Suy ra \(a + b = 2,5\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Có \(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).
Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).
Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).
\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).
b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\) là \(H\left( { - 1; - 4} \right)\).
c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.