Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {2;2} \right),B\left( {1;5} \right)\) và đỉnh \(C\) nằm trên đường thẳng \(d:2x - y - 8 = 0\). Tọa độ đỉnh \(C\left( {a;b} \right)\), biết rằng \(C\) có tung độ âm và diện tích tam giác \(ABC\) bằng 2. Tính \(a + 2b\).
Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có \(A\left( {2;2} \right),B\left( {1;5} \right)\) và đỉnh \(C\) nằm trên đường thẳng \(d:2x - y - 8 = 0\). Tọa độ đỉnh \(C\left( {a;b} \right)\), biết rằng \(C\) có tung độ âm và diện tích tam giác \(ABC\) bằng 2. Tính \(a + 2b\).
Quảng cáo
Trả lời:
Đáp án:
Có \(\overrightarrow {AB} = \left( { - 1;3} \right)\) là vectơ chỉ phương của \(AB\) nên nhận \(\overrightarrow n = \left( {3;1} \right)\) làm vectơ pháp tuyến.
Đường thẳng \(AB\) đi qua \(A\) và nhận \(\overrightarrow n = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3x + y - 8 = 0\).
Vì \(C \in d \Rightarrow C\left( {t;2t - 8} \right)\).
Ta có \(AB = \sqrt {10} \) mà \({S_{\Delta ABC}} = 2 \Rightarrow d\left( {C,AB} \right) = \frac{4}{{\sqrt {10} }}\).
Khi đó \(\frac{{\left| {3t + \left( {2t - 8} \right) - 8} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \frac{4}{{\sqrt {10} }}\)\( \Leftrightarrow \left| {5t - 16} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}t = 4\\t = \frac{{12}}{5}\end{array} \right.\).
Với \(t = 4 \Rightarrow C\left( {4;0} \right)\) (loại).
Với \(t = \frac{{12}}{5} \Rightarrow C\left( {\frac{{12}}{5}; - \frac{{16}}{5}} \right)\). Do đó \(a + 2b = - 4\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\overrightarrow {AB} = \left( {0;48} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\) nên \(\overrightarrow {{n_1}} = \left( {1;0} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).
Ta có \(\overrightarrow {AC} = \left( {37;48} \right)\)là một vectơ chỉ phương của đường thẳng \(AC\) nên \(\overrightarrow {{n_2}} = \left( { - 48;37} \right)\) là một vectơ pháp tuyến của đường thẳng \(AC\).
Góc lệch của Phà với lúc dự tính ban đầu chính là góc giữa hai đường thẳng \(AB\) và \(AC\).
Ta có \(\cos \left( {AB,AC} \right) = \frac{{\left| {1 \cdot \left( { - 48} \right) + 0 \cdot 37} \right|}}{{\sqrt {{1^2} + {0^2}} \cdot \sqrt {{{\left( { - 48} \right)}^2} + {{37}^2}} }} = \frac{{48}}{{\sqrt {3673} }}\)\( \Rightarrow \widehat A \approx 38^\circ \).
Lời giải
Có \(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).
Vì \(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).
Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).
\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).
Câu 3
a) Tọa độ của \(\overrightarrow {BC} \) là \(\left( {0; - 4} \right)\).
b) Tọa độ trung điểm của \(AB\) là \(\left( {\frac{3}{2};1} \right)\).
c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.