Câu hỏi:

07/01/2026 5 Lưu

Ông A có một mảnh vườn hình Elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\) có khoảng cách giữa hai tiêu điểm \({F_1}{F_2} = 40\;{\rm{m}}\) và tổng khoảng cách đo được từ một điểm \(M\) bất kì thuộc elip đến hai tiêu điểm bằng 50 m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn bán kình 15 m tiếp xúc trong với Elip (tham khảo hình vẽ). Nửa bên trong đường tròn ông nuôi gà, nửa bên ngoài đường tròn ông làm đường đi. Tính diện tích phần làm đường đi. Biết diện tích hình Elip được tính theo công thức \(S = \pi ab\) với độ rộng của đường Elip, đường tròn là không đáng kể.

Ông A có một mảnh vườn hình Elip (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo đề ta có \(\left\{ \begin{array}{l}M{F_1} + M{F_2} = 2a\\{F_1}{F_2} = 2c\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a = 50\\2c = 40\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 25\\c = 20\end{array} \right. \Rightarrow b = \sqrt {{a^2} - {c^2}} = 15\).

Diện tích của \(\left( E \right)\)\(S = \pi \cdot 25 \cdot 15 = 375\pi \).

Diện tích hình tròn là \(S = \pi {R^2} = 225\pi \).

Suy ra diện tích đường đi là \(375\pi - 225\pi = 150\pi \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

a) \(\overrightarrow {BC}  = \left( {0; - 4} \right)\).

b) Tọa độ trung điểm của \(AB\)\(\left\{ \begin{array}{l}x = \frac{{0 + 3}}{2} = \frac{3}{2}\\y = \frac{{1 + 1}}{2} = 1\end{array} \right.\).

c) Có \(\overrightarrow {AB} = \left( {3;0} \right),\overrightarrow {AC} = \left( {3; - 4} \right)\).

Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 3 \cdot 3 + 0 \cdot \left( { - 4} \right) = 9\).

d)

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) biết A{ 0;1} (ảnh 1)

Theo tính chất tia phân giác, \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{3}{5}\).

\(\overrightarrow {DB} \)\(\overrightarrow {DC} \) là hai vectơ ngược hướng nên \(\overrightarrow {DB} = - \frac{3}{5}\overrightarrow {DC} \)\( \Leftrightarrow \left\{ \begin{array}{l}3 - a = - \frac{3}{5}\left( {3 - a} \right)\\1 - b = - \frac{3}{5}\left( { - 3 - b} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = - \frac{1}{2}\end{array} \right.\).

Suy ra \(a + b = 2,5\).

Đáp án: a) Đúng;    b) Đúng;     c) Sai;     d) Đúng.

Lời giải

\(\overrightarrow {AM} = \left( {x - 1;y - 3} \right)\); \(\overrightarrow {AB} = \left( { - 2; - 1} \right)\).

\(M\left( {x;y} \right)\) thuộc tia \(AB\) nên \(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\).

Theo đề ta có hệ \(\left\{ \begin{array}{l}\frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 1}}\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\{\left( {2y - 6} \right)^2} + {\left( {y - 3} \right)^2} = 80\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\5{y^2} - 30y - 35 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2y - 5\\\left[ \begin{array}{l}y = 7\\y = - 1\end{array} \right.\end{array} \right.\)\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = - 7\\y = - 1\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( { - 8; - 4} \right)\\\left\{ \begin{array}{l}x = 9\\y = 7\end{array} \right. \Rightarrow \overrightarrow {AM} = \left( {8;4} \right)\end{array} \right.\).

\(\overrightarrow {AM} = k\overrightarrow {AB} ,k > 0\) nên \(M\left( { - 7; - 1} \right)\). Do đó \(x = - 7;y = - 1\). Vậy \(x + y = - 8\).

Câu 6

a) \(\overrightarrow {AB} = \left( { - 6;5} \right)\).

Đúng
Sai

b) Hình chiếu vuông góc kẻ từ \(A\) xuống \(BC\)\(H\left( { - 1; - 4} \right)\).

Đúng
Sai

c) \(\cos \widehat {BAC} = - \frac{{\sqrt 5 }}{5}\).

Đúng
Sai
d) Tọa độ điểm \(M\) thỏa mãn \(\overrightarrow {MA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \)\(\left( { - 7;0} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = 1 - 4t\\y = 2 + 3t\end{array} \right.\).             
B. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\end{array} \right.\).                      
C. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 4 + t\end{array} \right.\).                     
D. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 - 4t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP