Câu hỏi:

07/01/2026 49 Lưu

Cho tam giác\(ABC\)\(A\left( { - 3;2} \right),B\left( {2;4} \right),C\left( {1; - 2} \right)\).

a) Tính tọa độ vectơ \(\overrightarrow {AB} \) và độ dài đoạn thẳng \(AB\).

b) Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC\).

c) Tìm tọa độ điểm \(M\) thuộc trục hoành sao cho \(AM + MC\) ngắn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\overrightarrow {AB} = \left( {5;2} \right),\overrightarrow {AB} = \sqrt {25 + 4} = \sqrt {29} \).

b) Tọa độ trọng tâm \(G\)\(\left\{ \begin{array}{l}{x_G} = \frac{{ - 3 + 2 + 1}}{3} = 0\\{y_G} = \frac{{2 + 4 - 2}}{3} = \frac{4}{3}\end{array} \right.\)\( \Rightarrow G\left( {0;\frac{4}{3}} \right)\).

c) Ta có \(A\)\(C\) khác phía so với trục hoành nên \(AM + MC\) ngắn nhất khi \(A,M,C\) thẳng hàng.

Gọi \(M\left( {x;0} \right)\) thuộc trục hoành , ta có \(\overrightarrow {AM} = \left( {x + 3; - 2} \right),\overrightarrow {AC} = \left( {4; - 4} \right)\) cùng phương nên \(\frac{{x + 3}}{4} = \frac{{ - 2}}{{ - 4}} \Leftrightarrow x = - 1\). Vậy \(M\left( { - 1;0} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\overrightarrow {AB} = \left( {0;48} \right)\) là một vectơ chỉ phương của đường thẳng \(AB\) nên \(\overrightarrow {{n_1}} = \left( {1;0} \right)\) là một vectơ pháp tuyến của đường thẳng \(AB\).

Ta có \(\overrightarrow {AC} = \left( {37;48} \right)\)là một vectơ chỉ phương của đường thẳng \(AC\) nên \(\overrightarrow {{n_2}} = \left( { - 48;37} \right)\) là một vectơ pháp tuyến của đường thẳng \(AC\).

Góc lệch của Phà với lúc dự tính ban đầu chính là góc giữa hai đường thẳng \(AB\)\(AC\).

Ta có \(\cos \left( {AB,AC} \right) = \frac{{\left| {1 \cdot \left( { - 48} \right) + 0 \cdot 37} \right|}}{{\sqrt {{1^2} + {0^2}} \cdot \sqrt {{{\left( { - 48} \right)}^2} + {{37}^2}} }} = \frac{{48}}{{\sqrt {3673} }}\)\( \Rightarrow \widehat A \approx 38^\circ \).

Lời giải

Tọa độ điểm \(M\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x = t\\y = - 1 + 3t\\x - 2y + 3 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = t\\y = - 1 + 3t\\t + 2 - 6t + 3 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\t = 1\end{array} \right. \Rightarrow M\left( {1;2} \right)\)

Suy ra \(a = 1;b = 2\). Vậy \(2024a - b = 2022\).

Câu 3

a) Tọa độ của \(\overrightarrow {BC} \)\(\left( {0; - 4} \right)\).

Đúng
Sai

b) Tọa độ trung điểm của \(AB\)\(\left( {\frac{3}{2};1} \right)\).

Đúng
Sai

c) \(\overrightarrow {AB} \cdot \overrightarrow {AC} = - 9\).

Đúng
Sai
d) Gọi \(D\left( {a;b} \right)\) là chân đường phân giác trong kẻ từ đỉnh \(A\) lên \(BC\). Khi đó \(a + b = 2,5\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left\{ \begin{array}{l}x = 1 - 4t\\y = 2 + 3t\end{array} \right.\).             
B. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 4t\end{array} \right.\).                      
C. \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 4 + t\end{array} \right.\).                     
D. \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 - 4t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP