Từ các chữ số \(0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5\). Có bao nhiêu số tự nhiên có ba chữ số khác nhau chia hết cho 6?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi số cần tìm là \(\overline {abc} \,\,\left( {a \ne 0} \right)\)
Để số đó chia hết cho \(6\) thì số đó vừa chia hết cho \(2\) và \(3\).
Do đó số cần tìm là số chẵn nên \(c \in \left\{ {0;2;4} \right\}\).
+) TH1 \(c = 0\):
Ta có các bộ số có tổng chia hết cho \(3\) là:
\(\left( {0;\,\,1;\,\,2} \right),\,\left( {0;\,\,1;\,\,5} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;\,\,4;\,\,5} \right)\).
Do đó có \(1 + 1 + 1 + 1 = 4\) số.
+) TH2 \(c = 2\):
Ta có các bộ số có tổng chia hết cho \(3\) là:
\(\left( {0;\,\,1;\,\,2} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {1;\,\,2;\,\,3} \right),\,\left( {2;3;4} \right)\).
Do đó có \(1 + 1 + 2! + 2! = 6\) số.
+) TH3 \(c = 4\):
Ta có các bộ số có tổng chia hết cho \(3\) là:
\(\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;5;4} \right),\,\,\left( {2;3;4} \right),\left( {3;4;5} \right)\).
Do đó có \(1 + 1 + 2! + 2! = 6\) số.
Vậy \(4 + 6 + 6 = 16\) số.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Hàm số \(f\left( x \right) = 2{x^2} - 2x + 1\) là tam thức bậc hai có \(\Delta = {\left( { - 2} \right)^2} - 4.2.1 = - 4 < 0\) nên \(f(x)\) vô nghiệm và \(a = 2 > 0\) do đó có bảng xét dấu:

Lời giải
Hướng dẫn giải
Gọi số có 3 chữ số khác nhau là \[\overline {abc} \,\left( {a \ne 0} \right)\].
Chọn \[a\] có \[6\] cách chọn (vì \[a\] chọn tuý ý một trong các số từ \[1\] đến \[6\]).
Chọn \[b\] có \[5\] cách chọn (vì \[b \ne a\] nên \[b\] có thể chọn một trong các số từ \[1\] đến \[6\] nhưng không được chọn số mà \[a\] đã chọn).
Chọn \[c\] có \[4\] cách chọn (vì \[c \ne a,\,c \ne b\] nên \[c\] có thể chọn một trong các số từ \[1\] đến \[6\] nhưng không được chọn số mà \[a,\,b\] đã chọn).
Áp dụng quy tắc nhân, ta có \[6.5.4 = 120\] số có ba chữ số khác nhau được lập từ các số \[1;\,2;\,3;\,4;\,5;\,6\].
Vậy số phần tử của không gian mẫu là: \[n\left( \Omega \right) = 120\].
Gọi \[A\] là biến cố: “chọn được số tự nhiên có ba chữ số khác nhau sao cho số đó nhỏ hơn \[323\]”.
TH1: \(a = 3\), khi đó:
Nếu \(b < 2\) thì \(b \in \left\{ {0;1} \right\}\) hay \(b\) có \(2\) cách; \(c\) có \(5\) cách.
Do đó có: \(1.2.5 = 10\) số.
Nếu \(b = 2\) thì \(b\) có \(1\) cách; \(c\) phải nhỏ hơn \(3\) và khác \(b\) nên \(c \in \left\{ {0;1} \right\}\) hay \(c\) có \(2\) cách.
Do đó có: \(1.1.2 = 2\) số.
TH2: \(a < 3\) nên \(a \in \left\{ {1;2} \right\}\) hay \(a\) có hai cách chọn, khi đó:
\(b\) có \(6\) cách chọn, \(c\) có \(5\) cách chọn.
Do đó có \(2.6.5 = 60\) số.
Vậy có \(10 + 2 + 60 = 72\) số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



