Câu hỏi:

08/01/2026 44 Lưu

Từ các chữ số \(0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5\). Có bao nhiêu số tự nhiên có ba chữ số khác nhau chia hết cho 6?

A. \[16\];  
B. \[4\]; 
C. \[20\];
D. \[6\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Gọi số cần tìm là \(\overline {abc} \,\,\left( {a \ne 0} \right)\)

Để số đó chia hết cho \(6\) thì số đó vừa chia hết cho \(2\) và \(3\).

Do đó số cần tìm là số chẵn nên \(c \in \left\{ {0;2;4} \right\}\).

+) TH1 \(c = 0\):

Ta có các bộ số có tổng chia hết cho \(3\) là:

\(\left( {0;\,\,1;\,\,2} \right),\,\left( {0;\,\,1;\,\,5} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;\,\,4;\,\,5} \right)\).

Do đó có \(1 + 1 + 1 + 1 = 4\) số.

+) TH2 \(c = 2\):

Ta có các bộ số có tổng chia hết cho \(3\) là:

\(\left( {0;\,\,1;\,\,2} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {1;\,\,2;\,\,3} \right),\,\left( {2;3;4} \right)\).

Do đó có \(1 + 1 + 2! + 2! = 6\) số.

+) TH3 \(c = 4\):

Ta có các bộ số có tổng chia hết cho \(3\) là:

\(\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;5;4} \right),\,\,\left( {2;3;4} \right),\left( {3;4;5} \right)\).

Do đó có \(1 + 1 + 2! + 2! = 6\) số.

Vậy \(4 + 6 + 6 = 16\) số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \[I\left( { - 2t + 3;\,t} \right) \in d\] là tâm của đường tròn \[\left( C \right)\].

Theo giả thiết, ta có:

\[d\left( {I,\,\Delta } \right) = R \Leftrightarrow \frac{{\left| { - 2t + 3 + 3t - 5} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \frac{{\left| {t - 2} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \left[ \begin{array}{l}t = 6\\t =  - 2\end{array} \right.\]

+) Với \[t = 6 \Rightarrow I\left( { - 9;\,6} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x + 9} \right)^2} + {\left( {y - 6} \right)^2} = \frac{8}{5}\].

+) Với \[t =  - 2 \Rightarrow I\left( {7;\, - 2} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} = \frac{8}{5}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Hàm số \(f\left( x \right) = 2{x^2} - 2x + 1\) là tam thức bậc hai có \(\Delta  = {\left( { - 2} \right)^2} - 4.2.1 =  - 4 < 0\) nên \(f(x)\) vô nghiệm và \(a = 2 > 0\) do đó có bảng xét dấu:

Hàm số f (x) = 2(x^2)- 2x + 1 có bảng xét dấu là (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[25{x^2} + 10x + 1 > 0,\,\forall x \in \mathbb{R}\backslash \left\{ {\frac{{ - 1}}{5}} \right\}\];
B. \[25{x^2} + 10x + 1 > 0,\,\forall x \in \mathbb{R}\];
C. \[25{x^2} + 10x + 1 < 0,\,\forall x \in \mathbb{R}\backslash \left\{ {\frac{{ - 1}}{5}} \right\}\];
D. \[25{x^2} + 10x + 1 < 0,\,\forall x \in \mathbb{R}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP