Từ các chữ số \(0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5\). Có bao nhiêu số tự nhiên có ba chữ số khác nhau chia hết cho 6?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi số cần tìm là \(\overline {abc} \,\,\left( {a \ne 0} \right)\)
Để số đó chia hết cho \(6\) thì số đó vừa chia hết cho \(2\) và \(3\).
Do đó số cần tìm là số chẵn nên \(c \in \left\{ {0;2;4} \right\}\).
+) TH1 \(c = 0\):
Ta có các bộ số có tổng chia hết cho \(3\) là:
\(\left( {0;\,\,1;\,\,2} \right),\,\left( {0;\,\,1;\,\,5} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;\,\,4;\,\,5} \right)\).
Do đó có \(1 + 1 + 1 + 1 = 4\) số.
+) TH2 \(c = 2\):
Ta có các bộ số có tổng chia hết cho \(3\) là:
\(\left( {0;\,\,1;\,\,2} \right),\,\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {1;\,\,2;\,\,3} \right),\,\left( {2;3;4} \right)\).
Do đó có \(1 + 1 + 2! + 2! = 6\) số.
+) TH3 \(c = 4\):
Ta có các bộ số có tổng chia hết cho \(3\) là:
\(\,\left( {0;\,\,2;\,\,4} \right),\,\,\left( {0;5;4} \right),\,\,\left( {2;3;4} \right),\left( {3;4;5} \right)\).
Do đó có \(1 + 1 + 2! + 2! = 6\) số.
Vậy \(4 + 6 + 6 = 16\) số.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \[I\left( { - 2t + 3;\,t} \right) \in d\] là tâm của đường tròn \[\left( C \right)\].
Theo giả thiết, ta có:
\[d\left( {I,\,\Delta } \right) = R \Leftrightarrow \frac{{\left| { - 2t + 3 + 3t - 5} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \frac{{\left| {t - 2} \right|}}{{\sqrt {{1^2} + {3^2}} }} = \frac{{2\sqrt {10} }}{5} \Leftrightarrow \left[ \begin{array}{l}t = 6\\t = - 2\end{array} \right.\]
+) Với \[t = 6 \Rightarrow I\left( { - 9;\,6} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x + 9} \right)^2} + {\left( {y - 6} \right)^2} = \frac{8}{5}\].
+) Với \[t = - 2 \Rightarrow I\left( {7;\, - 2} \right)\], mà \[R = \frac{{2\sqrt {10} }}{5}\] nên phương trình đường tròn là \[\left( C \right):{\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} = \frac{8}{5}\].
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Hàm số \(f\left( x \right) = 2{x^2} - 2x + 1\) là tam thức bậc hai có \(\Delta = {\left( { - 2} \right)^2} - 4.2.1 = - 4 < 0\) nên \(f(x)\) vô nghiệm và \(a = 2 > 0\) do đó có bảng xét dấu:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



