Câu hỏi:

08/01/2026 28 Lưu

Từ thành phố \(A\) đến thành phố \(B\) có 4 con đường, từ thành phố \(B\) đến thành phố \(C\) có \(3\) con đường. Có bao nhiêu cách đi từ thành phố \(A\) đến thành phố \(C\) phải đi qua thành phố \(B\)?

Từ thành phố A đến thành phố B có 4 con đường, từ thành phố B đến thành phố C có 3 con đường. Có bao nhiêu cách đi từ thành phố A đến thành phố C phải đi qua thành phố B?  (ảnh 1)

A. \(21\);
B. \(12\);
C. \(64\); 
D. \(7\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cách để đi từ thành phố \(A\) đến thành phố \(C\) phải đi qua thành phố \(B\) gồm \(2\) giai đoạn:

- Giai đoạn 1: Đi từ thành phố \(A\) đến thành phố \(B\) có 4 cách.

- Giai đoạn 1: Ứng với mỗi cách của giai đoạn 1, từ thành phố \(B\) đến thành phố \(C\) có \(3\) cách.

Áp dụng quy tắc nhân có \(4.3 = 12\) cách để đi từ thành phố \(A\) đến thành phố \(C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có cách chia 9 người thành 3 tổ có \(C_9^3.C_6^3.C_3^3 = 1\,\,680\)

Tổ 1 có \(C_3^1\) cách chọn bác sĩ, \(C_6^2\) cách chọn người còn lại. Do đó \(C_3^1.C_6^2 = 45\) cách.

Tổ 2 có \(C_2^1\) cách chọn bác sĩ, \(C_4^2\) cách chọn người còn lại. Do đó \(C_2^1.C_4^2 = 12\) cách.

Tổ 3 có \(C_1^1\) cách chọn bác sĩ, \(C_2^2\) cách chọn người còn lại. Do đó \(C_1^1.C_2^2 = 1\) cách.

Tổng có: \(45.12.1 = 540\) cách chia thành 3 tổ để mỗi tổ đều có bác sĩ .

Do đó xác suất để mỗi tổ đều có bác sĩ là \(\frac{{540}}{{1\,\,680}} = \frac{9}{{28}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Các phần tử của không gian mẫu là:

\(\Omega  = \left\{ {SSS;\,SSN;\,SNS;\,NSS;\,SNN;\,NSN;\,NNS;\,NNN} \right\}\)

\( \Rightarrow n\left( \Omega  \right) = 8\).

Gọi \(A\) là biến cố: “Gieo được \(2\) đồng xu sấp và \(1\) đồng xu ngửa”.

Khi đó \(A = \left\{ {SSN;\,\,SNS;\,\,NSS} \right\}\)

\( \Rightarrow n\left( A \right) = 3\)

  \[ \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{3}{8}\].

Câu 3

A. \(\frac{1}{6}\);  
B. \(\frac{1}{2}\);  
C. \(\frac{1}{4}\);    
D. \(\frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(4\) viên bi lấy ra cùng màu;                             
B. \(4\) viên bi lấy ra đều màu đen;
C. \(4\) viên bi lấy ra có ít nhất một viên bi đen;     
D. \(4\) viên bi lấy ra có đủ hai màu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {a + 2b} \right)^2}\);   
B. \({\left( {a + b} \right)^4}\);
C. \({\left( {a + 2b} \right)^4}\);  
D. \({\left( {2a + 2b} \right)^4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP