Câu hỏi:

09/01/2026 15 Lưu

Trong mặt phẳng \(Oxy\), cho điểm \(M\) nằm trên đường tròn \(\left( C \right):{x^2} + {y^2} + 8x - 6y + 16 = 0\). Độ dài nhỏ nhất của \(OM\) là

A. \(3\);   
B. \(1\);  
C. \(5\);   
D. \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Đường tròn \(\left( C \right)\) có tâm \(I\left( { - 4;3} \right)\), bán kính \(R = 3\).

Ta có \(\overrightarrow {OI}  = \left( { - 4;3} \right)\) suy ra phương trình đường thẳng \(OI\) là \(\left\{ \begin{array}{l}x =  - 4t\\y = 3t\end{array} \right.\).

Gọi \(OI \cap \left( C \right) = \left\{ M \right\}\).  Khi đó \(M\left( { - 4t;3t} \right)\).

Vì \(M \in \left( C \right)\) nên ta có: \({\left( { - 4t} \right)^2} + {\left( {3t} \right)^2} + 8.\left( { - 4t} \right) - 6.\left( {3t} \right) + 16 = 0\)

\[ \Leftrightarrow 25{t^2} - 50t + 16 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{8}{5}\\t = \frac{2}{5}\end{array} \right.\]

Với \(t = \frac{8}{5} \Rightarrow {M_1}\left( { - \frac{{32}}{5};\frac{{24}}{5}} \right)\).

Với \(t = \frac{2}{5} \Rightarrow {M_2}\left( { - \frac{8}{5};\frac{6}{5}} \right)\).

Ta có \(O{M_1} = \sqrt {{{\left( { - \frac{{32}}{5}} \right)}^2} + {{\left( {\frac{{24}}{5}} \right)}^2}}  = 8,O{M_2} = \sqrt {{{\left( { - \frac{8}{5}} \right)}^2} + {{\left( {\frac{6}{5}} \right)}^2}}  = 2\).

Vì vậy độ dài nhỏ nhất của \(OM\) là \(O{M_{\min }} = O{M_2} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Từ một điểm nằm ngoài đường tròn có thể vẽ được \(2\) tiếp tuyến đến đường tròn đó.

Lời giải

Hướng dẫn giải

Gọi số cần tìm có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \) là số thỏa yêu cầu bài toán thì \({a_3} + {a_4} + {a_5} = 8\).

Có hai bộ \(3\) số có tổng bằng \(8\) trong các số \(1;2;3;...;9\) là: \(\left\{ {1;2;5} \right\}\)và \(\left\{ {1;3;4} \right\}\)

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) thì \({a_3},{a_4},{a_5}\) có \(3!\) cách chọn và \({a_1},{a_2},{a_6}\) có \(A_6^3\) cách chọn suy ra có \(3!A_6^3 = 720\) số thỏa mãn yêu cầu.

Nếu \({a_3};{a_4};{a_5} \in \left\{ {1;2;5} \right\}\) tương tự ta cũng có \(720\) số thỏa yêu cầu.

Vậy có \(720 + 720 = 1400\) số thỏa yêu cầu.

b) Điều kiện: \[n \ge 2,n \in {\mathbb{N}^*}\]

\[C_n^1 + C_n^2 = 15 \Leftrightarrow n + \frac{{n\left( {n - 1} \right)}}{2} = 15 \Leftrightarrow {n^2} + n - 30 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 5}\\{n =  - 6}\end{array}} \right. \Rightarrow n = 5\]

Khi đó,

\[{\left( {x + \frac{2}{{{x^4}}}} \right)^5} = C_5^0{x^5}{\left( {\frac{2}{{{x^4}}}} \right)^0} + C_5^1{x^4}\left( {\frac{2}{{{x^4}}}} \right) + C_5^2{x^3}{\left( {\frac{2}{{{x^4}}}} \right)^2} + C_5^3{x^2}{\left( {\frac{2}{{{x^4}}}} \right)^3} + C_5^4x{\left( {\frac{2}{{{x^4}}}} \right)^4} + C_5^5{x^0}{\left( {\frac{2}{{{x^4}}}} \right)^5}\]\( = {x^5} + 10 + \frac{{40}}{{{x^5}}} + \frac{{80}}{{{x^{10}}}} + \frac{{80}}{{{x^{15}}}} + \frac{{32}}{{{x^{20}}}}\)

Suy hệ số của số hạng không chứa \[x\] trong khai triển \({\left( {x + \frac{2}{{{x^4}}}} \right)^5}\) là \(10\).

Câu 3

A. \[I\left( {2;3} \right),\,\,R = 9\];
B. \[I\left( {2; - 3} \right),\,\,R = 3\];
C. \[I\left( { - 3;2} \right),\,\,R = 3\]; 
D. \[I\left( { - 2;3} \right),\,\,R = 3\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP