Cho tam giác nhọn ABC cân tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho \[\widehat {{\rm{BDC}}}{\rm{ = 2}}\widehat {{\rm{BAC}}}\] (AD không vuông góc với BC).
a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn.
b) Chứng minh OD là đường phân giác ngoài của \[\widehat {{\rm{BDC}}}\] và tổng \[{\rm{BD + CD}}\] bằng hai lần khoảng cách từ A đến đường thẳng OD.
Cho tam giác nhọn ABC cân tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho \[\widehat {{\rm{BDC}}}{\rm{ = 2}}\widehat {{\rm{BAC}}}\] (AD không vuông góc với BC).
a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn.
b) Chứng minh OD là đường phân giác ngoài của \[\widehat {{\rm{BDC}}}\] và tổng \[{\rm{BD + CD}}\] bằng hai lần khoảng cách từ A đến đường thẳng OD.
Quảng cáo
Trả lời:

a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn.
Ta có \[\widehat {{\rm{BDC}}} = 2\widehat {{\rm{BAC}}}\] (gt), \[\widehat {{\rm{BOC}}} = 2\widehat {{\rm{BAC}}}\] (t/c góc ở tâm)\[ \Rightarrow \widehat {{\rm{BDC}}} = \widehat {{\rm{BOC}}}\].
Mà O, D nằm cùng phía đối với đường thẳng BC nên bốn điểm B, C, D, O cùng nằm trên một đường tròn.
b) Chứng minh OD là đường phân giác ngoài của \[\widehat {{\rm{BDC}}}\] và tổng \[{\rm{BD + CD}}\] bằng hai lần khoảng cách từ A đến đường thẳng OD.
- Dựng đường kính OP của đường tròn (O’) đi qua 4 điểm B, O, D, C.
\[ \Rightarrow \widehat {{\rm{BDP}}} = \frac{1}{2}\]sđ, \[\widehat {{\rm{CDP}}} = \frac{1}{2}\]sđ.
+ \[{\rm{OP}} \bot {\rm{BC}} \Rightarrow \] sđ= sđ\[ \Rightarrow \widehat {{\rm{BDP}}} = \widehat {{\rm{CDP}}}\].
Do đó DP là đường phân giác trong của \[\widehat {{\rm{BDC}}}\].
Lại có \[{\rm{OD}} \bot {\rm{DP}} \Rightarrow \] OD là đường phân giác ngoài của \[\widehat {{\rm{BDC}}}\].
+ Dựng đường thẳng qua C, vuông góc với OD và cắt đường thẳng BD tại C’.
+ Vì OD là đường phân giác ngoài của \[\widehat {{\rm{BDC}}}\] nên DC = DC’ và OC = OC’ (C’ nằm trên đường tròn (O)).
+ Ta có: BD + CD = BD + DC’ = BC’ = 2BK (với K là trung điểm của BC’).
+ Hạ AL vuông góc với đường thẳng OD tại L.
- Xét hai tam giác vuông ALO và BKO có:
+ OA = OB ( bán kính đường tròn ngoại tiếp tam giác ABC).
+ \[\widehat {{\rm{OAL}}} = \widehat {{\rm{OPD}}}\] (so le trong)
Suy ra hai tam giác ALO và BKO bằng nhau. Do đó BK = AL.
Suy ra BD + CD = 2AL (điều cần chứng minh).
Cách khác:

Kẻ \[{\rm{AL}} \bot {\rm{OD}}\] tại \[{\rm{L}}\].
Trên tia đối của tia \[{\rm{DB}}\] lấy điểm \[{\rm{C}}'\] sao cho \[{\rm{DC}}' = {\rm{DC}}\], do đó \[{\rm{BD}} + {\rm{DC}} = {\rm{BC}}'\](1)
Tam giác \({\rm{DCC}}'\) cân tại D nên \[\widehat {{\rm{BDC}}} = 2.\widehat {{\rm{BC'C}}}\], từ đó suy ra \[\widehat {{\rm{BAC}}} = \widehat {{\rm{BC'C}}}\], do đó điểm \[{\rm{C}}'\] thuộc đường tròn \[\left( {\rm{O}} \right)\]
Có \[{\rm{OC}} = {\rm{O'C}}\,,\,\,{\rm{DC}} = {\rm{DC}}'\] nên OD là đường thẳng chứa tia phân giác của góc ngoài của \[\widehat {{\rm{BDC}}}\].
Gọi E là giao điểm của OD và BC, chứng minh được \[\widehat {{\rm{DBC}}} = \widehat {{\rm{C'OE}}}\] (cùng bằng \[\widehat {{\rm{DOC}}}\])
Hay \[\widehat {{\rm{C'BE}}} = \widehat {{\rm{C'OE}}}\], do đó bốn điểm \[{\rm{B}},\,{\rm{O}},\,{\rm{C}}',\,{\rm{E}}\] cùng thuộc một đường tròn.
Suy ra \[\widehat {{\rm{OBC}}'} = \widehat {{\rm{OEC}}'}\] ( cùng chắn cung OC’)
Mặt khác \[\widehat {{\rm{OEB}}} = \widehat {{\rm{OEC}}'}\], do đó \[\widehat {{\rm{OEB}}} = \widehat {{\rm{OBC}}'}\].
Lại có \[\widehat {{\rm{LAO}}} = \widehat {{\rm{OEB}}}\]( góc có cạnh tương ứng vuông góc), suy ra\[\widehat {{\rm{LAO}}} = \widehat {{\rm{OBC}}'}\]
Kẻ \[{\rm{OK}} \bot {\rm{BC}}'\] tại \[{\rm{K}}\], suy ra \[{\rm{BC}}' = 2{\rm{BK}}\]
Ta có \[\Delta \,{\rm{ALO}} = \Delta \,{\rm{BKO}}\] ( cạnh huyền, góc nhọn), suy ra \[{\rm{AL}} = {\rm{BK}}\]
Suy ra \[{\rm{BC}}' = 2{\rm{AL}}\](2)
Từ (1) và (2) suy ra \[{\rm{BD}} + {\rm{DC}} = 2{\rm{AL}}\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chứng minh \[{\rm{PI = PB}}{\rm{.}}\]
Ta có \[\widehat {{\rm{BAP}}}\,{\rm{ = }}\,\widehat {{\rm{CAP}}}\] (vì sđ= sđ) .
\[\widehat {{\rm{BIP}}}\,{\rm{ = }}\,\widehat {{\rm{BAI}}}{\rm{ + }}\widehat {{\rm{ABI}}}{\rm{ = }}\widehat {{\rm{PAC}}}{\rm{ + }}\widehat {{\rm{CBI}}}{\rm{ = }}\widehat {{\rm{PBC}}}{\rm{ + }}\widehat {{\rm{CBI}}}{\rm{ = }}\widehat {{\rm{ PBI}}}{\rm{.}}\]
Suy ra tam giác PBI cân tại P. Do đó PI = PB.
b) Chứng minh \[\widehat {{\rm{IMB}}}{\rm{ = }}\widehat {{\rm{INA}}}{\rm{.}}\]
+ Trong tam giác vuông BNP tại B có: \[{\rm{B}}{{\rm{P}}^{\rm{2}}}\,{\rm{ = }}\,{\rm{MP}}{\rm{.NP}}\]\[ \Rightarrow \frac{{{\rm{BP}}}}{{{\rm{MP}}}}{\rm{ = }}\frac{{{\rm{NP}}}}{{{\rm{BP}}}}\] hay \[\frac{{{\rm{IP}}}}{{{\rm{MP}}}}{\rm{ = }}\frac{{{\rm{NP}}}}{{{\rm{IP}}}}\].
+ Hai tam giác PMI và PIN có: \[\widehat {{\rm{IPM}}}\,{\rm{ = }}\,\widehat {{\rm{NPI}}}\] và \[\frac{{{\rm{IP}}}}{{{\rm{MP}}}}{\rm{ = }}\frac{{{\rm{NP}}}}{{{\rm{IP}}}}\] nên hai tam giác này đồng dạng.
Suy ra \[\widehat {{\rm{PMI}}}\,{\rm{ = }}\,\widehat {{\rm{PIN}}}\].
+ Ta có \[\widehat {{\rm{IMB}}}\,\,{\rm{ = }}\widehat {{\rm{PMI}}}\, - {\rm{90}}^\circ \], \[\widehat {{\rm{INA}}}\,{\rm{ = }}\widehat {{\rm{PIN}}}\, - \widehat {{\rm{IAN}}}{\rm{ = }}\widehat {{\rm{PMI}}}\, - {\rm{90}}^\circ \]. Suy ra \[\widehat {{\rm{IMB}}}\,\,{\rm{ = }}\,\widehat {{\rm{INA}}}{\rm{.}}\]
Lời giải
|
+ \[({\rm{d}}):\,\,y\,\, = \,ax + b\] đi qua \[{\rm{A}}\left( {1\,;\,\frac{3}{2}} \right)\] nên \[a + b = \frac{3}{2} \Leftrightarrow b = \frac{3}{2} - a\]. + Phương trình hoành độ giao điểm của (P) và (d) là: \(\,2{x^2} = ax + b \Leftrightarrow 2{x^2} = ax + \frac{3}{2} - a\)\( \Leftrightarrow 4{x^2} - 2ax + 2a - 3 = 0\) (*) + (d) và (P) có đúng một điểm chung khi phương trình (*) có một nghiệm duy nhất \( \Leftrightarrow \Delta ' = 0 \Leftrightarrow {a^2} - 4(2a - 3) = 0 \Leftrightarrow {a^2} - 8a + 12 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a = 2\\a = 6\end{array} \right.\) \( + \,\,a = 2 \Rightarrow b = - \frac{1}{2},\,\,\,a = 6 \Rightarrow b = - \frac{9}{2}\) Vậy \(a = 2,\,\,b = - \frac{1}{2}\) hoặc \(a = 6,\,\,b = - \frac{9}{2}\). |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.