Một cái cốc thuỷ tinh có dạng hình trụ có chiều cao 8 cm và bán kính đáy 3 cm (bề dày lớp thủy tinh là không đáng kể).
a) Tính thể tích của cái cốc.
b) Tính diện tích xung quanh của cái cốc.
Một cái cốc thuỷ tinh có dạng hình trụ có chiều cao 8 cm và bán kính đáy 3 cm (bề dày lớp thủy tinh là không đáng kể).
a) Tính thể tích của cái cốc.
b) Tính diện tích xung quanh của cái cốc.
Quảng cáo
Trả lời:
a) Thể tích của cái cốc là \[V = \pi {R^2}h = \pi {.3^2}.8 = 72\pi (c{m^3})\]
b) Diện tích xung quanh của cái cốc là: \[S = 2\pi Rh = 2\pi .3.8 = 48\pi (c{m^2})\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có \[D \in \left( O \right)\] nên \[\widehat {ADB} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn)
Khi đó \[\Delta ACD\]vuông tại \[D\] nên \[A,C,D\]cùng thuộc đường tròn đường kính \[AC\]
Vậy \[A,C,D,H\]cùng thuộc đường tròn đường kính \[AC\] hay \[ACDH\] là tứ giác nội tiếp.
b) Do \[ACDH\] là tứ giác nội tiếp nên \[ADH = ACH\] (cùng chắn cung \[AH\] ) (1)
Ta có \[\widehat {ACH} + \widehat {AOC} = 90^\circ \] (\[\Delta ACO\]vuông tại \[A\] ) và \[\widehat {OAH} + \widehat {AOC} = {90^0}\] (do \[\Delta AHO\]vuông tại \[H\] )
Suy ra \[\widehat {ACH} = \widehat {OAH}\]
Từ (1) và (2) suy ra \[\widehat {ADH} = \widehat {OAH}\] hay \[\widehat {ADH} = \widehat {BAH}\] (3)
b) Do \[\widehat {ADH} = \widehat {OAH}\] ( cmt) và \[\widehat {AOC}\]chung nên
Suy ra \[\frac{{AO}}{{CO}} = \frac{{OH}}{{OA}}\] hay \[O{A^2} = OH.OC\]
Mà \[OA = OB\]nên \[O{B^2} = OH.OC\]hay \[\frac{{OB}}{{OH}} = \frac{{OC}}{{OB}}\]Kết hợp với \[\widehat {COB}\]chung nên suy ra \[\widehat {OBH} = \widehat {OCB}\]
Mà \[\widehat {OCB} = \widehat {DAH}\] (cùng chắn cung \[DH\]) nên \[\widehat {OBH} = \widehat {OCB}\]
Từ (3) và (4) suy ra
Lời giải
Gọi v \[(km/h)\]là vận tốc dự định ban đầu \[v > 15\]
Vận tốc thực tế là \[v - 15\] (km/h)
Thời gian dự tính là \[\frac{{90}}{V}(h)\]
Thời gian thực tế là \[\frac{{90}}{{V - 15}}(h)\]
Vì đến B nhiều hơn dự định \[30\] phút \[ = 0,5(h)\]nên ta có:
\[\frac{{90}}{{V - 15}} - \frac{{90}}{V} = 0,5\]
\[\frac{{90V}}{{V(V - 15)}} - \frac{{90(V - 15)}}{{V(V - 15)}} = 0,5\]
\[\begin{array}{l}1350 = 0,5V(V - 15)\\0,5{V^2} - 7,5V - 1350 = 0\end{array}\]
Giải phương trình ta được \[V = 60(t/m);v = - 45(kt/m)\]
Vậy tốc độ dự định là \[60k/h\]. Tốc độ thực tế là \[45k/h\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.