Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong mặt phẳng tọa độ \(Oxy\), cho \(A\left( {2; - 3} \right),B\left( {2;7} \right)\). Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong mặt phẳng tọa độ \(Oxy\), cho \(A\left( {2; - 3} \right),B\left( {2;7} \right)\). Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là
Câu hỏi trong đề: Đề kiểm tra Toán 10 Cánh diều Chương 7 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Tọa độ trung điểm \(I\) của đoạn thẳng \(AB\) là \(\left\{ \begin{array}{l}{x_I} = \frac{{2 + 2}}{2} = 2\\{y_I} = \frac{{ - 3 + 7}}{2} = 2\end{array} \right.\)\( \Rightarrow I\left( {2;2} \right)\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
a) Ta có \(\overrightarrow {AB} = \left( { - 2;3} \right),\overrightarrow {BC} = \left( {0; - 6} \right)\).
Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {BC} = \left( { - 2} \right) \cdot 0 + 3 \cdot \left( { - 6} \right) = - 18\).
b) \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {AB} \cdot \overrightarrow {BC} }}{{\left| {\overrightarrow {AB} } \right| \cdot \left| {\overrightarrow {BC} } \right|}} = \frac{{ - 18}}{{\sqrt {13} \cdot \sqrt {36} }} = - \frac{{3\sqrt {13} }}{{13}}\).
c) Gọi \(D\left( {x;y} \right)\).
Ta có \(\overrightarrow {DC} = \left( {2 - x; - 2 - y} \right),\overrightarrow {AB} = \left( { - 2;3} \right)\).
Để \(ABCD\) là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}2 - x = - 2\\ - 2 - y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = - 5\end{array} \right.\).
Vậy \(D\left( {4; - 5} \right)\).
d) Gọi \(H\left( {x;y} \right)\) là trực tâm tam giác \(ABC\).
Ta có \(\overrightarrow {AH} = \left( {x - 4;y - 1} \right),\overrightarrow {BH} = \left( {x - 2;y - 4} \right),\overrightarrow {BC} = \left( {0; - 6} \right);\overrightarrow {AC} = \left( { - 2; - 3} \right)\).
Do \(H\) là trực tâm tam giác \(ABC\) nên
\(\left\{ \begin{array}{l}AH \bot BC\\BH \bot AC\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AH} \cdot \overrightarrow {BC} = 0\\\overrightarrow {BH} \cdot \overrightarrow {AC} = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}0\left( {x - 4} \right) - 6\left( {y - 1} \right) = 0\\ - 2\left( {x - 2} \right) - 3\left( {y - 4} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{13}}{2}\\y = 1\end{array} \right.\)\( \Rightarrow H\left( {\frac{{13}}{2};1} \right)\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Lời giải
Tam giác \(ABC\) vuông tại A, có \(AB = \frac{{AC}}{{\tan B}} = \frac{{2,5}}{{\tan 60^\circ }} = \frac{{5\sqrt 3 }}{6}\).
Suy ra \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {\frac{{5\sqrt 3 }}{6}} \right)}^2} + {{2,5}^2}} = \frac{{5\sqrt 3 }}{3}\).
Ta có \(P = \overrightarrow {AM} \cdot \overrightarrow {BM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \frac{1}{2}\overrightarrow {BC} = \frac{1}{4}\left( {\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {AC} \cdot \overrightarrow {BC} } \right)\)
\[ = \frac{1}{4}\left( { - \left| {\overrightarrow {BA} } \right|\left| {\overrightarrow {BC} } \right|\cos B + \left| {\overrightarrow {AC} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos C} \right)\]\[ = \frac{1}{4}\left( { - \frac{{5\sqrt 3 }}{6} \cdot \frac{{5\sqrt 3 }}{3} \cdot \cos 60^\circ + 2,5 \cdot \frac{{5\sqrt 3 }}{3} \cdot \cos 30^\circ } \right) = \frac{{25}}{{24}} \approx 1,04\].
Trả lời: 1,04.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Điểm \(M\left( {\sqrt {20} ;4} \right) \in \left( H \right)\).
b) Tiêu cự của hypebol bằng 6.
c) Các tiêu điểm của hypebol là \({F_1}\left( { - 6;0} \right);{F_2}\left( {6;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
