Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có tọa độ đỉnh \(A\left( {4;3} \right),B\left( {2; - 3} \right),C\left( {1;1} \right)\).
Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) có tọa độ đỉnh \(A\left( {4;3} \right),B\left( {2; - 3} \right),C\left( {1;1} \right)\).
a) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( { - 2; - 6} \right)\).
b) Phương trình tổng quát của đường thẳng \(BC\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {4;1} \right)\).
c) Phương trình tham số của đường thẳng đi qua 2 điểm \(A,B\) là \(\left\{ \begin{array}{l}x = 4 - 2t\\y = 3 + 6t\end{array} \right.\).
Quảng cáo
Trả lời:
a) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( { - 2; - 6} \right)\).
b) Có \(\overrightarrow {BC} = \left( { - 1;4} \right)\) là một vectơ chỉ phương của đường thẳng \(BC\). Suy ra đường thẳng \(BC\) nhận \(\overrightarrow n = \left( {4;1} \right)\) làm một vectơ pháp tuyến.
c) Đường thẳng \(AB\) đi qua điểm \(A\left( {4;3} \right)\) có vectơ chỉ phương \(\overrightarrow {AB} = \left( { - 2; - 6} \right)\) có phương trình là \(\left\{ \begin{array}{l}x = 4 - 2t\\y = 3 - 6t\end{array} \right.\).
d) \(M\left( {\frac{3}{2}; - 1} \right)\) là trung điểm của \(BC\).
Có \(\overrightarrow {AM} = \left( { - \frac{5}{2}; - 4} \right) = \frac{1}{2}\left( { - 5; - 8} \right)\).
Do đó đường trung tuyến \(AM\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 5; - 8} \right)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đường thẳng \(d \bot \Delta \) nên \(d\) nhận vectơ chỉ phương \(\overrightarrow u = \left( { - 3;5} \right)\) của đường thẳng \(\Delta \) làm vectơ pháp tuyến.
Suy ra \(d\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {5;3} \right)\).
Khi đó \(d\) có phương trình là \(\left\{ \begin{array}{l}x = - 2 + 5t\\y = 1 + 3t\end{array} \right.\). Chọn B.
Lời giải
Dễ thấy \(A,B\) nằm khác phía với đường thẳng \(d\).
Khi đó \(AM + MB \ge AB\).
Do đó đường đi ngắn nhất khi 3 điểm \(A,B,M\) thẳng hàng.
Suy ra \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương.
Ta có \(M \in d \Rightarrow M\left( {t; - 5 - 2t} \right)\), \(\overrightarrow {AM} = \left( {t - 1; - 2t - 2} \right),\overrightarrow {AB} = \left( { - 5;5} \right)\).
Do \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương nên \(\frac{{t - 1}}{{ - 5}} = \frac{{ - 2t - 2}}{5}\)\( \Leftrightarrow 5\left( {t - 1} \right) - \left( { - 2t - 2} \right) \cdot \left( { - 5} \right) = 0 \Rightarrow t = - 3\)\( \Rightarrow M\left( { - 3;1} \right)\).
Do đó \(a + b = - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.