Có hai con tàu \(A,B\) xuất phát từ hai bến, chuyển động theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (xem như mặt phẳng tọa độ \(Oxy\) với đơn vị trên các trục tính bằng km), tại thời điểm \(t\) (giờ), vị trí của tàu \(A\) có tọa độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - 4 + 25t\end{array} \right.\), vị trí tàu \(B\) có tọa độ là \(\left( {4 - 30t;3 - 40t} \right)\). Tính góc giữa hai đường đi của hai tàu \(A,B\) (đơn vị độ, kết quả làm tròn đến hàng phần chục).
Có hai con tàu \(A,B\) xuất phát từ hai bến, chuyển động theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (xem như mặt phẳng tọa độ \(Oxy\) với đơn vị trên các trục tính bằng km), tại thời điểm \(t\) (giờ), vị trí của tàu \(A\) có tọa độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 33t\\y = - 4 + 25t\end{array} \right.\), vị trí tàu \(B\) có tọa độ là \(\left( {4 - 30t;3 - 40t} \right)\). Tính góc giữa hai đường đi của hai tàu \(A,B\) (đơn vị độ, kết quả làm tròn đến hàng phần chục).
Quảng cáo
Trả lời:
Đáp án:
Hai đường đi của hai tàu có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - 33;25} \right),\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\).
Gọi \(\varphi \) là góc giữa hai đường đi của hai tàu.
Ta có \(\cos \varphi = \frac{{\left| {\overrightarrow {{u_1}} \cdot \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right| \cdot \left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| { - 33 \cdot \left( { - 30} \right) + 25 \cdot \left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 33} \right)}^2} + {{25}^2}} \cdot \sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} \approx 0,00483 \Rightarrow \varphi \approx 89,7^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đường thẳng \(d \bot \Delta \) nên \(d\) nhận vectơ chỉ phương \(\overrightarrow u = \left( { - 3;5} \right)\) của đường thẳng \(\Delta \) làm vectơ pháp tuyến.
Suy ra \(d\) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {5;3} \right)\).
Khi đó \(d\) có phương trình là \(\left\{ \begin{array}{l}x = - 2 + 5t\\y = 1 + 3t\end{array} \right.\). Chọn B.
Lời giải
Dễ thấy \(A,B\) nằm khác phía với đường thẳng \(d\).
Khi đó \(AM + MB \ge AB\).
Do đó đường đi ngắn nhất khi 3 điểm \(A,B,M\) thẳng hàng.
Suy ra \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương.
Ta có \(M \in d \Rightarrow M\left( {t; - 5 - 2t} \right)\), \(\overrightarrow {AM} = \left( {t - 1; - 2t - 2} \right),\overrightarrow {AB} = \left( { - 5;5} \right)\).
Do \(\overrightarrow {AM} ,\overrightarrow {AB} \) cùng phương nên \(\frac{{t - 1}}{{ - 5}} = \frac{{ - 2t - 2}}{5}\)\( \Leftrightarrow 5\left( {t - 1} \right) - \left( { - 2t - 2} \right) \cdot \left( { - 5} \right) = 0 \Rightarrow t = - 3\)\( \Rightarrow M\left( { - 3;1} \right)\).
Do đó \(a + b = - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Đường thẳng \(AB\) có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( { - 2; - 6} \right)\).
b) Phương trình tổng quát của đường thẳng \(BC\) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {4;1} \right)\).
c) Phương trình tham số của đường thẳng đi qua 2 điểm \(A,B\) là \(\left\{ \begin{array}{l}x = 4 - 2t\\y = 3 + 6t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.