Trong mặt phẳng tọa độ \(Oxy\), cho hypebol có phương trình \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\).
Trong mặt phẳng tọa độ \(Oxy\), cho hypebol có phương trình \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\).
a) Có \(a = 2;b = 3\).
b) Hypebol có hai tiêu điểm \({F_1}\left( { - \sqrt {13} ;0} \right),{F_2}\left( {\sqrt {13} ;0} \right)\).
c) Điểm \(M\left( {5;{y_M}} \right)\) với \({y_M} > 0\) nằm trên hypebol có tung độ \({y_M} = \frac{{2\sqrt {21} }}{3}\).
Quảng cáo
Trả lời:
a) Có \(a = 2;b = 3\).
b) \({F_1}\left( { - \sqrt {13} ;0} \right),{F_2}\left( {\sqrt {13} ;0} \right)\) là hai tiêu điểm của hypebol.
c) \(M\left( {5;{y_M}} \right)\) thuộc hypebol nên \(\frac{{{5^2}}}{4} - \frac{{{y_M}^2}}{9} = 1 \Rightarrow y_M^2 = \frac{{189}}{4} \Rightarrow {y_M} = \frac{{3\sqrt {21} }}{2}\) (vì \({y_M} > 0\)).
d) Tọa độ điểm A, B là nghiệm của hệ \(\left\{ \begin{array}{l}\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1\\y = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \pm 2\sqrt 2 \\y = 3\end{array} \right.\).
Suy ra \(AB = 4\sqrt 2 \).
Khi đó \({S_{AOB}} = \frac{1}{2}d\left( {O,y = 3} \right) \cdot AB = \frac{1}{2} \cdot 3 \cdot 4\sqrt 2 = 6\sqrt 2 \).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(\left( H \right):\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1,\left( {a > 0,b > 0} \right)\).
Vì \(\left( H \right)\) đi qua hai điểm \(M\left( {4;\sqrt 8 } \right)\) và \(N\left( {2\sqrt 3 ;2} \right)\) nên ta có:
\(\left\{ \begin{array}{l}\frac{{{4^2}}}{{{a^2}}} - \frac{{{{\left( {\sqrt 8 } \right)}^2}}}{{{b^2}}} = 1\\\frac{{{{\left( {2\sqrt 3 } \right)}^2}}}{{{a^2}}} - \frac{{{2^2}}}{{{b^2}}} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{{{a^2}}} = \frac{1}{8}\\\frac{1}{{{b^2}}} = \frac{1}{8}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a^2} = 8\\{b^2} = 8\end{array} \right.\). Vậy \(\frac{{{x^2}}}{8} - \frac{{{y^2}}}{8} = 1\). Chọn B.
Câu 2
a) Phương trình chính tắc của \(\left( P \right)\) là \({y^2} = x\).
b) Tiêu điểm của \(\left( P \right)\) là \(F\left( {\frac{1}{2};0} \right)\).
c) Đường chuẩn của \(\left( P \right)\) là \(\Delta :x + \frac{1}{4} = 0\).
Lời giải
a) Gọi \(\left( P \right):{y^2} = 2px\).
Vì \(\left( P \right)\) đi qua \(A\left( {1;1} \right)\) nên \(1 = 2p \cdot 1 \Leftrightarrow p = \frac{1}{2}\).
Vậy \({y^2} = x\).
b) Tiêu điểm của \(\left( P \right)\) là \(F\left( {\frac{1}{4};0} \right)\).
c) Đường chuẩn của \(\left( P \right)\) là \(\Delta :x + \frac{1}{4} = 0\).
d) Có \({\left( { - 2} \right)^2} = x \Rightarrow x = 4\).
Vậy \(M\left( {4; - 2} \right)\). Khi đó \(MF = \sqrt {{{\left( {\frac{1}{4} - 4} \right)}^2} + {{\left( {0 + 2} \right)}^2}} = \frac{{17}}{4}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( P \right)\) có tiêu điểm \(F\left( { - 2;0} \right)\).
B. \(\left( P \right)\) có tiêu điểm \(F\left( {2;0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Tọa độ một tiêu điểm của elip \(\left( E \right)\) là \(\left( {5;0} \right)\).
b) Elip \(\left( E \right)\) đi qua điểm \(A\left( {13; - 12} \right)\).
c) Elip \(\left( E \right)\) có tiêu cự bằng 10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.