Câu hỏi:

13/01/2026 35 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\).

a)\({a^2} = 25;{b^2} = 9\).

Đúng
Sai

b) Elip có hai tiêu điểm là \({F_1}\left( { - 3;0} \right);{F_2}\left( {3;0} \right)\).

Đúng
Sai

c) Elip cắt trục hoành tại hai điểm có tọa độ là \({A_1}\left( { - 6;0} \right);{A_2}\left( {6;0} \right)\).

Đúng
Sai
d) Elip cắt hai trục tọa độ tại bốn điểm tạo thành hình thoi có diện tích bằng 15.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \({a^2} = 25;{b^2} = 9\).

b) \(c = \sqrt {{a^2} - {b^2}} = 4\).

Vậy elip có hai tiêu điểm là \({F_1}\left( { - 4;0} \right);{F_2}\left( {4;0} \right)\).

c) Cho \(y = 0 \Rightarrow {x^2} = 25 \Rightarrow x = \pm 5\).

Vậy elip cắt cắt trục hoành tại hai điểm có tọa độ là \({A_1}\left( { - 5;0} \right);{A_2}\left( {5;0} \right)\).

d) Cho \(x = 0 \Rightarrow {y^2} = 9 \Rightarrow y = \pm 3\).

Vậy elip cắt trục tung tại 2 điểm có tọa độ là \({B_1}\left( {0; - 3} \right);{B_2}\left( {0;3} \right)\).

Khi đó diện tích hình thoi \({A_1}{B_1}{A_2}{B_2}\)\(S = {A_1}{A_2} \cdot {B_1}{B_2} = 60\).

Đáp án: a) Đúng;    b) Sai;    c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x = - \frac{2}{3}\).   
B. \(x = - \frac{1}{3}\).    
C. \(x = - \frac{3}{2}\).   
D. \(x = \frac{2}{3}\).

Lời giải

\(x = - \frac{3}{2}\) là phương trình đường chuẩn của parabol. Chọn C.

Lời giải

Theo đề ta có hệ \(\left\{ \begin{array}{l}{a^2} - \frac{{{b^2}}}{9} = 1\\{a^2} + {b^2} = 11\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 2\\{b^2} = 9\end{array} \right.\). Suy ra \(b = 3\)\(b > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\sqrt 6 \).                   
B. \(6\).                              
C. \(2\sqrt 6 \).                 
D. \(12\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({x^2} - {y^2} = 1\).   
B. \(\frac{{{x^2}}}{8} - \frac{{{y^2}}}{8} = 1\).     
C. \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{16}} = 1\).     
D. \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{64}} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP