Câu hỏi:

25/01/2026 6 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\) có hai tiêu điểm là \({F_1},{F_2}\).

a) Tiêu cự của \(\left( E \right)\) là 8.

Đúng
Sai

b) Điểm \(F\left( { - 5;0} \right)\) trùng với một tiêu điểm của \(\left( E \right)\).

Đúng
Sai

c) Điểm \(K\left( {3;0} \right)\) thuộc \(\left( E \right)\).

Đúng
Sai
d) Biết rằng hypebol \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) và đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\). Điểm \(M\) là một điểm bất kì nằm trên \(\left( H \right)\) thì \(\left| {M{F_1} - M{F_2}} \right| = 2\sqrt 3 \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \({a^2} = 25;{b^2} = 9 \Rightarrow {c^2} = {a^2} - {b^2} = 25 - 9 = 16 \Rightarrow c = 4\).

Tiêu cự là \(2c = 8\).

b) Tiêu điểm \({F_1}\left( { - 4;0} \right),{F_2}\left( {4;0} \right)\).

c) Thay tọa độ điểm \(K\left( {3;0} \right)\) vào phương trình \(\left( E \right)\) ta thấy không thỏa mãn.

Do đó \(K\left( {3;0} \right)\) không thuộc \(\left( E \right)\).

d) Có \(\left( H \right):\frac{{{x^2}}}{{{A^2}}} - \frac{{{y^2}}}{{{B^2}}} = 1\) có các tiêu điểm trùng với các tiêu điểm của \(\left( E \right)\) nên \({A^2} + {B^2} = 16\).

Lại có \(\left( H \right)\) đi qua điểm \(N\left( {\sqrt {15} ;1} \right)\) nên \(\frac{{15}}{{{A^2}}} - \frac{1}{{{B^2}}} = 1 \Rightarrow 15{B^2} - {A^2} = {A^2}{B^2}\)\( \Rightarrow 240 - 16{A^2} = {A^2}\left( {16 - {A^2}} \right)\)\[ \Rightarrow {A^4} - 32{A^2} + 240 = 0 \Rightarrow \left[ \begin{array}{l}{A^2} = 12\left( {TM} \right)\\{A^2} = 20\left( {KTM} \right)\end{array} \right.\].

Với \({A^2} = 12 \Rightarrow A = 2\sqrt 3 \).

Suy ra \(\left| {M{F_1} - M{F_2}} \right| = 4\sqrt 3 \).

Đáp án: a) Đúng;     b) Sai;   c) Sai;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

Đúng
Sai

b) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) có phương trình \(x + 7y + 9 = 0\).

Đúng
Sai

c) Điểm \(A\) thuộc đường tròn \(\left( C \right)\).

Đúng
Sai
d) Có hai tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\).
Đúng
Sai

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {5; - 2} \right),R = 5\sqrt 2 \).

a) Ta có \(d\left( {I,\Delta } \right) = \frac{{\left| {5 - \left( { - 2} \right) + 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{10}}{{\sqrt 2 }} = 5\sqrt 2 = R\).

Do đó đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

b) Ta có \(\overrightarrow {IA} = \left( { - 7;1} \right)\).

Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\)  nhận \(\overrightarrow {IA} = \left( { - 7;1} \right)\) làm vectơ pháp tuyến có phương trình là

\( - 7\left( {x + 2} \right) + \left( {y + 1} \right) = 0\) hay \(7x - y + 13 = 0\).

c) Thay tọa độ điểm \(A\) vào phương trình đường tròn ta thấy thỏa mãn.

Do đó điểm \(A\) thuộc đường tròn \(\left( C \right)\).

d) Tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\) có dạng \(d':x + y + c = 0,c \ne 7\)

Lại có \(d\left( {I,d'} \right) = R\)\( \Leftrightarrow \frac{{\left| {5 - 2 + c} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 5\sqrt 2 \)\( \Leftrightarrow \left| {3 + c} \right| = 10\)\( \Leftrightarrow \left[ \begin{array}{l}3 + c = 10\\3 + c = - 10\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 7\\c = - 13\end{array} \right.\).

\(c \ne 7\) nên \(c = - 13\).

Vậy có 1 tiếp tuyến là \(d':x + y - 13 = 0\).

Đáp án: a) Đúng;     b) Sai;   c) Đúng;    d) Sai.

Câu 2

A. \(F\left( { - 2;0} \right)\). 
B. \(F\left( {1;0} \right)\).     
C. \(F\left( {2;0} \right)\).         
D. \(F\left( { - 1;0} \right)\).

Lời giải

Ta có \(F\left( {2;0} \right)\) là tiêu điểm của \(\left( P \right)\). Chọn C.

Câu 4

A. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 25\).                       

B. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 16\).                                   

C. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 20\).                        
D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x = 2\\y =  - 1 + 6t\end{array} \right.\).         
B. \(\left\{ \begin{array}{l}x = 2 + t\\y = 5 + 6t\end{array} \right.\). 
C. \(\left\{ \begin{array}{l}x = 1\\y = 2 + 6t\end{array} \right.\).     
D. \(\left\{ \begin{array}{l}x = 2t\\y =  - 6t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Điểm \(M\) thuộc đường thẳng \(d\).

Đúng
Sai

b) Hai đường thẳng \(d\)\(\Delta \) song song với nhau.

Đúng
Sai

c) Đường thẳng đi qua \(M\) và vuông góc với đường thẳng \(\Delta \) có phương trình \(4x + 3y + 17 = 0\).

Đúng
Sai
d) Khoảng cách giữa hai đường thẳng \(d\) và \(\Delta \) bằng \(\frac{7}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP