Câu hỏi:

25/01/2026 9 Lưu

Cho parabol \({y^2} = 2px\) với \(p > 0\) như hình vẽ, trong đó đường thẳng \(d\) là đường chuẩn. Tìm hoành độ điểm \(M\) nếu \(2M{H^2} + 3MF = 44\).

Cho parabol {y^2} = 2px\) với \(p > 0\) như hình vẽ, trong đó đường thẳng (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

3

Theo đề ta có phương trình đường chuẩn \(d\) \(x = - 1 \Rightarrow p = 2\).

Do đó \(\left( P \right):{y^2} = 4x\).

\(M \in \left( P \right) \Rightarrow MF = d\left( {M,d} \right) = MH\).

Do đó \(2M{H^2} + 3MF = 44\)\[ \Leftrightarrow 2M{H^2} + 3MH = 44\]\[ \Leftrightarrow MH = 4\]\(MH > 0\).

Giả sử \(M\left( {{x_0};{y_0}} \right)\) nên \(MH = d\left( {M,d} \right) = \left| {{x_0} + 1} \right| = {x_0} + 1\) (vì \({x_0} > 0\)).

Do đó \({x_0} + 1 = 4 \Rightarrow {x_0} = 3\).

Vậy hoành độ của điểm \(M\) là 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

Đúng
Sai

b) Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\) có phương trình \(x + 7y + 9 = 0\).

Đúng
Sai

c) Điểm \(A\) thuộc đường tròn \(\left( C \right)\).

Đúng
Sai
d) Có hai tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\).
Đúng
Sai

Lời giải

Đường tròn \(\left( C \right)\) có tâm \(I\left( {5; - 2} \right),R = 5\sqrt 2 \).

a) Ta có \(d\left( {I,\Delta } \right) = \frac{{\left| {5 - \left( { - 2} \right) + 3} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{10}}{{\sqrt 2 }} = 5\sqrt 2 = R\).

Do đó đường thẳng \(\Delta :x - y + 3 = 0\) tiếp xúc với đường tròn \(\left( C \right)\).

b) Ta có \(\overrightarrow {IA} = \left( { - 7;1} \right)\).

Tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A\)  nhận \(\overrightarrow {IA} = \left( { - 7;1} \right)\) làm vectơ pháp tuyến có phương trình là

\( - 7\left( {x + 2} \right) + \left( {y + 1} \right) = 0\) hay \(7x - y + 13 = 0\).

c) Thay tọa độ điểm \(A\) vào phương trình đường tròn ta thấy thỏa mãn.

Do đó điểm \(A\) thuộc đường tròn \(\left( C \right)\).

d) Tiếp tuyến của đường tròn \(\left( C \right)\) song song với đường thẳng \(d:x + y + 7 = 0\) có dạng \(d':x + y + c = 0,c \ne 7\)

Lại có \(d\left( {I,d'} \right) = R\)\( \Leftrightarrow \frac{{\left| {5 - 2 + c} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 5\sqrt 2 \)\( \Leftrightarrow \left| {3 + c} \right| = 10\)\( \Leftrightarrow \left[ \begin{array}{l}3 + c = 10\\3 + c = - 10\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}c = 7\\c = - 13\end{array} \right.\).

\(c \ne 7\) nên \(c = - 13\).

Vậy có 1 tiếp tuyến là \(d':x + y - 13 = 0\).

Đáp án: a) Đúng;     b) Sai;   c) Đúng;    d) Sai.

Câu 2

A. \(F\left( { - 2;0} \right)\). 
B. \(F\left( {1;0} \right)\).     
C. \(F\left( {2;0} \right)\).         
D. \(F\left( { - 1;0} \right)\).

Lời giải

Ta có \(F\left( {2;0} \right)\) là tiêu điểm của \(\left( P \right)\). Chọn C.

Câu 3

A. \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 25\).                       

B. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 16\).                                   

C. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} = 20\).                        
D. \({\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x = 2\\y =  - 1 + 6t\end{array} \right.\).         
B. \(\left\{ \begin{array}{l}x = 2 + t\\y = 5 + 6t\end{array} \right.\). 
C. \(\left\{ \begin{array}{l}x = 1\\y = 2 + 6t\end{array} \right.\).     
D. \(\left\{ \begin{array}{l}x = 2t\\y =  - 6t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP