Câu hỏi:

02/02/2026 43 Lưu

Hai vòi nước chảy vào hai bể có dung tích như nhau là 2400 lít. Mỗi phút vòi thứ hai chảy nhiều hơn vòi thứ nhất 8 lít nên thời gian để vòi thứ hai chảy đầy bể ít hơn vòi thứ nhất là 10 phút. Mỗi phút cả hai vòi chảy được bao nhiêu lít?

A. 40                     
B. 44                    
C. 88                          
D. 80

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gọi số lít vòi 1 chảy trong 1 phút đầy bể là \(x\)(lít)

Thi số lít vòi 2 chảy trong 1 phút là là \(x + 8\)(lít)

Thời gian vòi 1 chảy đầy bề là \(\frac{{2400}}{x}\)(phút)

Thời gian vòi 2 chảy đầy bề là \(\frac{{2400}}{{x + 8}}\) (lít)

Ta có phương trình \(\frac{{2400}}{x} - \frac{{2400}}{{x + 8}} = 10\)

Giải phương trình được \(x = 40\)(thỏa mãn), \(x =  - 48\)(loại)

Vậy môĩ phút cả 2 vòi chảy được: 40 + 40 + 8 = 88 (lít)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(10\)\(7\)    
B. \(11\)\(6\) 
C. \(8\)\(9\)                       
D. \(5\)\(12\)

Lời giải

Chọn C

Gọi số thứ nhất là \(x\) thì số thứ hai là \(17 - x\)

Vì tổng lập phương của hai số đó bằng \(1241\) nên ta có phương trình

\({x^3} + {(17 - x)^3} = 1241\)

\({x^3} + 4913 - 867{\rm{x + 51}}{x^2} - {x^3} = 1241\)

\({\rm{51}}{x^2} - 867{\rm{x}} = 3672\)

\({x^2} - 17{\rm{x - }}72 = 0\) Giải phương trình tìm được hai số là \(8\)và \(9\)

\(\Delta  = 289 - 288 = 1 > 0\) vì \(\Delta  > 0\): Phương trình có hai nghiệm phân biệt

\({x_1} = \frac{{17 + 1}}{2} = 9\) \({x_2} = \frac{{1711}}{2} = 8\)

Vậy hai số cần tìm là \(8\)và \(9\)

Câu 2

A. \(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{1}{6}.\)        
B. \(\frac{1}{x} + \frac{1}{{x - 3}} = \frac{1}{6}.\)      
C. \(\frac{1}{x} - \frac{1}{{x + 3}} = \frac{1}{6}.\)        
D. \(\frac{1}{x} - \frac{1}{{x - 3}} = \frac{1}{6}.\)

Lời giải

Chọn A

Gọi thời gian vòi thứ nhất chảy một mình đầy bể là \(x\) (giờ) với \(x > 6.\)

Vì nều mỗi vòi chảy một mình cho đây bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 3 giờ nên thời gian vòi thứ hai chảy một mình đầy bể là \(x - 3\) (giờ)

Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{x}\) (bể)

Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{{x - 3}}\) (bể)

Trong \(1\) giờ, cả hai vòi chảy được \(\frac{1}{6}\) (bể)

Phương trình của bài toán là: \(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{1}{6}.\)

Câu 3

A. \(m < - 2\).      
B. \(m > - 2\).     
C. \(m \le - 2\).                      
D. \(m \ge - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(300{\rm{\;}}\)\({\rm{cm}}\).    
B. \(250{\rm{\;}}\)\({\rm{cm}}\).         
C. \(350{\rm{\;}}\)\({\rm{cm}}\).         
D. \(400{\rm{\;}}\)\({\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {x - 1} \right)\left( {\frac{{360}}{x} + 1} \right) = 400\).                          
B. \(\left( {x - 1} \right)\left( {\frac{{360}}{x} + 1} \right) = 400\).
C. \(\left( {x - 1} \right)\left( {\frac{{360}}{x} + 1} \right) = 400\).                          
D. \(\left( {x - 1} \right)\left( {\frac{{360}}{x} + 1} \right) = 400\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 2\].              
B. \[\frac{4}{3}\].      
C. \[{\rm{2}}\] hoặc \[\frac{4}{3}\].      
D. \[ - 2\] hoặc\[\frac{4}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP