Hai đội công nhân làm chung một công việc thì hoàn thành sau \(12\) giờ, nếu làm riêng thì thời gian hoàn thành công việc của đội thứ hai ít hơn đội thứ nhất là \(7\)giờ. Hỏi nếu cần làm riêng thì thời gian để đội thứ nhất hoàn thành công việc là bao nhiêu?
Quảng cáo
Trả lời:
Chọn D
Gọi thời gian đội thứ nhất làm một mình hoàn thành công việc là \(x\) (giờ) \(x > 12\)
Thời gian đội hai làm một mình xong công việc là \(x - 7\) (giờ)
Trong \(1\) giờ, đội một thứ nhất làm được \[\frac{1}{x}\] (công việc)
Đội thứ hai làm được \[\frac{1}{{x - 7}}\](công việc)
Cả hai đội làm được \[\frac{1}{{12}}\] (công việc)
Ta có phương trình: \(\frac{1}{x} + \frac{1}{{x - 7}} = \frac{1}{{12}}\)
\(12\left( {x - 7} \right) + 12x = x\left( {x - 7} \right)\)
\({x^2} - 31x + 84 = 0\)
Ta có \(\Delta = {\left( { - 31} \right)^2} - 4.1.\left( {84} \right) = 625\)
Suy ra phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{31 + \sqrt {625} }}{{2.1}} = 28\) (thỏa mãn điều kiện); \({x_1} = \frac{{31 - \sqrt {625} }}{{2.1}} = 3\) (không thỏa mãn điều kiện)
Vậy thời gian đội thứ nhất làm một mình hoàn thành công việc là \(28\) (giờ)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Gọi số thứ nhất là \(x\) thì số thứ hai là \(17 - x\)
Vì tổng lập phương của hai số đó bằng \(1241\) nên ta có phương trình
\({x^3} + {(17 - x)^3} = 1241\)
\({x^3} + 4913 - 867{\rm{x + 51}}{x^2} - {x^3} = 1241\)
\({\rm{51}}{x^2} - 867{\rm{x}} = 3672\)
\({x^2} - 17{\rm{x - }}72 = 0\) Giải phương trình tìm được hai số là \(8\)và \(9\)
\(\Delta = 289 - 288 = 1 > 0\) vì \(\Delta > 0\): Phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{17 + 1}}{2} = 9\) \({x_2} = \frac{{1711}}{2} = 8\)
Vậy hai số cần tìm là \(8\)và \(9\)
Câu 2
Lời giải
Chọn A
Gọi thời gian vòi thứ nhất chảy một mình đầy bể là \(x\) (giờ) với \(x > 6.\)
Vì nều mỗi vòi chảy một mình cho đây bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 3 giờ nên thời gian vòi thứ hai chảy một mình đầy bể là \(x - 3\) (giờ)
Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{x}\) (bể)
Trong \(1\) giờ, vòi thứ nhất chảy được \(\frac{1}{{x - 3}}\) (bể)
Trong \(1\) giờ, cả hai vòi chảy được \(\frac{1}{6}\) (bể)
Phương trình của bài toán là: \(\frac{1}{x} + \frac{1}{{x + 3}} = \frac{1}{6}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.