Câu hỏi:

28/01/2026 17 Lưu

Tìm hai số biết rằng tổng của chúng bằng 17 đơn vị. Nếu số thứ nhất tăng thêm 3 đơn vị, số thứ 2 tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số thứ nhất là \(x\), số thứ hai là \(y\).

Theo đề bài tổng của hai số đó bằng 17 đơn vị nên ta có phương trình \(x + y = 17\). \[\left( 1 \right)\]

Số thứ nhất tăng thêm 3 đơn vị, số thứ hai tăng thêm 2 đơn vị thì tích của chúng bằng 105 đơn vị nên ta có phương trình \((x + 3)(y + 2) = 105\). \[\left( 2 \right)\]

Từ \((1)\) và \((2)\), ta có hệ phương trình

\(\left\{ {\begin{array}{*{20}{l}}{x + y = 17}\\{(x + 3)(y + 2) = 105}\end{array}} \right.\)

Rút \(y\) từ \((1)\) thế vào \((2)\) và thu gọn, ta được

\({x^2} - 16x + 48 = 0.\)

Giải phương trình ta được \({x_1} = 12\) (thỏa mãn) và \({x_2} = 4\) (thỏa mãn).

Vậy nếu số thứ nhất là 12 thì số thứ hai là 5; nếu số thứ nhất là 4 thì số thứ hai là 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \({x^2} - 2\left( {m + 2} \right)x - m - 7 = 0\)

Ta có \(\Delta ' = {\left( {m + 2} \right)^2} - \left( {m - 7} \right) = {m^2} + 5m + 11 = {\left( {m + \frac{5}{2}} \right)^2} + \frac{{19}}{4} > 0,\forall m \Rightarrow \Delta ' > 0\) với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.

b) \({x^2} - 4{m^2}x - 4m - 2 = 0\)

Ta có \(\Delta ' = 4{m^4} + 4m + 2 = 2(2{m^4} + 2m + 1)\)

mà \(2{m^4} + 2m + 1 = 2\left( {{m^4} - {m^2} + \frac{1}{4}} \right) + 2\left( {{m^2} + m + \frac{1}{4}} \right) = 2{\left( {{m^2} - \frac{1}{2}} \right)^2} + 2{\left( {m + \frac{1}{2}} \right)^2} \ge 0\)

Dấu “=” xảy ra khi \({m^2} - \frac{1}{2} = 0\)và \(m + \frac{1}{2} = 0\) suy ra vô lý \( \Rightarrow \Delta ' > 0\forall m.\)

Vậy phương trình luôn có hai nghiệm phân biệt.

Lời giải

a) Ta có

\[\begin{array}{l}{x^2} + \left( {m - 5} \right)x - 3\left( {m - 2} \right) = 0\\{x^2} - 3x + \left( {m - 2} \right)x - 3\left( {m - 2} \right) = 0\end{array}\]

\[\begin{array}{l}x\left( {x - 3} \right) + \left( {m - 2} \right)\left( {x - 3} \right) = 0\\\left( {x - 3} \right)\left( {x + m - 2} \right) = 0\end{array}\]

\[x = 3\] và \[x = 2 - m\]

Vậy phương trình trên luôn có nghiệm \[x = 3\] với mọi \[m \in \mathbb{R}\]

b) Phương trình có nghiệm kép khi và chỉ khi hai nghiệm của phương trình trùng nhau

Theo câu a) suy ra \[2 - m = 3 \Rightarrow m =  - 1\]

Ta cũng có thể xét \[\Delta  = {\left( {m - 5} \right)^2} + 4.3\left( {m - 2} \right) = {m^2} + 2m + 1 = {\left( {m + 1} \right)^2}\]

Phương trình có nghiệm kép khi

\[\begin{array}{l}\Delta  = 0\\{\left( {m + 1} \right)^2} = 0\\m =  - 1\end{array}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP