Cho phương trình \({x^2} - 2(m + 1)x + {m^2} + m - 1 = 0\) (\(m\) là tham số)
a) Giải phương trình đã cho với \(m = 0\).
b) Tìm \(m\) để phương trình có hai nghiệm phân biệt \[{x_1}\], \[{x_2}\] thỏa mãn điều kiện \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = 4\)
Cho phương trình \({x^2} - 2(m + 1)x + {m^2} + m - 1 = 0\) (\(m\) là tham số)
a) Giải phương trình đã cho với \(m = 0\).
b) Tìm \(m\) để phương trình có hai nghiệm phân biệt \[{x_1}\], \[{x_2}\] thỏa mãn điều kiện \(\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = 4\)
Quảng cáo
Trả lời:
a) Với \(m = 0\), phương trình đã cho trở thành: \({x^2} - 2x - 1 = 0\)
\(\Delta ' = 2{\rm{ ; }}{{\rm{x}}_{1,2}} = 1 \pm \sqrt 2 \)
Vậy với \(m = 0\) thì nghiệm của phương trình đã cho là \({x_{1,2}} = 1 \pm \sqrt 2 \).
b) \(\Delta ' = m + 2\) Phương trình đã cho có hai nghiệm phân biệt \( \Leftrightarrow \Delta > 0 \Leftrightarrow m + 2 > 0 \Leftrightarrow m > - 2\)
Áp dụng hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2(m + 1)\\{x_1}{x_2} = {m^2} + m - 1\end{array} \right.\)
Do đó:
\(\begin{array}{l}\frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = 4 \Leftrightarrow \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = 4 \Leftrightarrow \frac{{2(m + 1)}}{{{m^2} + m - 1}} = 4\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m - 1 \ne 0\\m + 1 = 2({m^2} + m - 1)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} + m - 1 \ne 0\\2{m^2} + m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - \frac{3}{2}\end{array} \right.\end{array}\)
Kết hợp với điều kiện \( \Rightarrow m \in \left\{ {1; - \frac{3}{2}} \right\}\) là các giá trị cần tìm.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì phương trình \({x^2} - 2x + m + 3 = 0\) có nghiệm \(x = - 1\) nên ta có:
\({( - 1)^2} - 2.( - 1) + m + 3 = 0 \Leftrightarrow m + 6 = 0 \Leftrightarrow m = - 6\)
Áp dụng hệ thức Viète, ta có:
\({x_1} + {x_2} = 2 \Leftrightarrow - 1 + {x_2} = 2 \Leftrightarrow {x_2} = 3\)
Vậy \(m = 6\) và nghiệm còn lại là \(x = 3\).
b) \(\Delta ' = {1^2} - 1.\left( {m + 3} \right) = - m - 2\)
Phương trình có hai nghiệm phân biệt
Theo hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = m + 3\end{array} \right.\)
Ta có
\(\begin{array}{l}x_1^3 + x_2^3 = 8\\ \Leftrightarrow {({x_1} + {x_2})^3} - 3{x_1}{x_2}({x_1} + {x_2}) = 8\\ \Leftrightarrow {2^3} - 3.(m + 3).2 = 8\\ \Leftrightarrow 6(m + 3) = 0\\ \Leftrightarrow m + 3 = 0\end{array}\)
\( \Leftrightarrow m = - 3\) (thỏa mãn điều kiện)
Vậy \(m = - 3\) là giá trị cần tìm.
Lời giải
1. Với \(m = - 3\) ta có phương trình \({x^2} + 8x = 0 \Leftrightarrow x\left( {x + 8} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 8{\rm{\;}}{\rm{.\;}}}\end{array}} \right.\)
2. Phương trình \[\left( 1 \right)\]có 2 nghiệm phân biệt khi
\({\rm{\Delta '}} \ge 0 \Leftrightarrow {(m - 1)^2} + \left( {m + 3} \right) \ge 0 \Leftrightarrow {m^2} - 2m + 1 + m + 3 \ge 0\)
\( \Leftrightarrow {m^2} - m + 4 \ge 0\)
\( \Leftrightarrow {\left( {m - \frac{1}{2}} \right)^2} + \frac{{15}}{4} > 0\) đúng với mọi \(m\)
Vậy chứng tỏ phương trình có 2 nghiệm phân biệt với mọi \(m\).
Theo hệ thức Viète ta có
Ta có:
\[\begin{array}{l}x_1^2 + {\rm{x}}_{\rm{2}}^{\rm{2}} = 10 & \\ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\\ \Leftrightarrow 4{(m - 1)^2} + 2\left( {m + 3} \right) = 10 & \end{array}\]
\[\begin{array}{l} \Leftrightarrow {\rm{ }}4{m^2} - 6m + 10 = 10\\\; \Leftrightarrow {\rm{\;}}2m\left( {2m - 3} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m = 0}\\{m = \frac{3}{2}.}\end{array}} \right.\end{array}\]
Vậy với \(m = 0\) hoặc \(m = \frac{3}{2}\)thỏa yêu cầu bài toán
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.