Gọi \({x_1};\,{x_2}\) là nghiệm của phương trình \({x^2} - 5mx - 2 = 0.\) Giá trị của biểu thức \(A = x_1^2 + x_2^2\) bằng bao nhiêu?
Quảng cáo
Trả lời:
Chọn B
Phương trình \({x^2} - 5x + 2 = 0\) có \(\Delta = {\left( { - 5m} \right)^2} + 4 \cdot 1 \cdot 2 = 25{m^2} + 8 > 0\) nên phương trình có hai nghiệm \({x_1};\,{x_2}.\)
Theo định lí Viète, ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}{x_1} + {x_2} = 5m\\{x_1}{x_2} = - 2\end{array} \right.\).
Ta có: \(A = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( {5m} \right)^2} - 2 \cdot \left( { - 2} \right) = 25{m^2} + 4.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Phương trình \({x^2} - 5x + m + 4 = 0\)có \(a = 1 \ne 0\) và \(\Delta = 25 - 4\left( {m + 4} \right) = 9 - 4m.\)
Để phương tình có hai nghiệm phân biệt thì \(\Delta > 0\) hay \(9 - 4m > 0\) hay \(m < \frac{9}{4}.\)
Theo định lí Viète ta có\(\left\{ \begin{array}{l}{x_1} + {x_2} = - 5\\{x_1}.{x_2} = m + 4\end{array} \right.\).
Xét \(x_1^2 + x_2^2 = 23\)
\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 23\)
\(25 - 2m - 8 = 23\)
\(m = - 3.\)(thỏa mãn)
Vậy \(m = - 3\) thì phương trình đã cho có hai nghiệm phân biệt \({x_1};\,\,{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 23.\)
Câu 2
Lời giải
Chọn B
Định lí Viète: Nếu \({x_1};\,{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.