Câu hỏi:

28/01/2026 22 Lưu

Một xe ô tô đang chuyển động đều thì người lái xe nhìn thấy chướng ngại vật trên đường. Sau 1 giây thì người lái xe bắt đầu đạp phanh. Ô tô chuyển động chậm dần đều với gia tốc \(a =  - \,5m/{s^2}\). Biết rằng kể từ lúc nhìn thấy chướng ngại vật cho đến khi dừng hẳn thì xe đi thêm được quãng đường 41,6 mét. Vận tốc của xe khi người lái xe bắt đầu phanh là bao nhiêu \(m/s\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

16

Gọi vận tốc của xe khi bắt đầu phanh là \({v_0}\) \(\left( {m/s} \right)\)

Vận tốc tại thời điểm \(t\) kể từ lúc bắt đầu phanh là: \(v\left( t \right) = \int {\left( { - 5} \right){\rm{dt}}}  =  - 5t + C\).

Vận tốc của vật tại thời điểm bắt đầu phanh xe là \({v_0}\,\left( {\,m/s} \right)\) nên ta có \(v\left( 0 \right) = {v_0} \Rightarrow C = {v_0} \Rightarrow v\left( t \right) =  - 5t + {v_0}\)

Quãng đường vật đi được tại thời điểm \(t\) kể từ khi bắt đầu đạp phanh là \(S\left( t \right) = \int {v(t){\rm{dt}}} \)\( = \int {\left( { - 5t + {v_0}} \right){\rm{dt}}}  =  - \frac{5}{2}{t^2} + {v_0}t + C\).

Ta có \(S\left( 0 \right) = 0 \Rightarrow C = 0 \Rightarrow S\left( t \right) =  - \frac{5}{2}{t^2} + {v_0}t\).

Khi xe dừng hẳn ta có \(v\left( t \right) = 0 \Leftrightarrow  - 5t + {v_0} = 0 \Leftrightarrow t = \frac{{{v_0}}}{5}\).

Quãng đường xe đi được từ khi bắt đầu đạp phanh đến khi dừng hẳn là \(S = S\left( {\frac{{{v_0}}}{5}} \right) =  - \frac{5}{2}{\left( {\frac{{{v_0}}}{5}} \right)^2} + \frac{{v_0^2}}{5} = \frac{{v_0^2}}{{10}}\) \(\left( m \right)\).

Quãng đường người lái xe đi từ khi nhìn thấy chướng ngại vật đến khi đạp phanh là \({v_0}\) \(\left( m \right)\).

Theo bài ra ta có phương trình \(\frac{{v_0^2}}{{10}} + {v_0} = 41,6\).

Giải phương trình ta được \(\left[ \begin{array}{l}{v_0} = 16\\{v_0} =  - 26\end{array} \right.\).

Vậy vận tốc khi người lái xe bắt đầu phanh là \(16\,\,\left( {m/s} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{{x^2} + 1}} = 1 + \frac{{2x}}{{{x^2} + 1}} = 1 + \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{{x^2} + 1}} = 1 + {\left[ {\ln \left( {{x^2} + 1} \right)} \right]^\prime }\)

\( \Rightarrow \int {f(x){\rm{d}}x}  = \int {1{\rm{d}}x}  + \int {{{\left[ {\ln ({x^2} + 1)} \right]}^\prime }{\rm{d}}x}  = x + \ln \left( {{x^2} + 1} \right) + C\)\( \Rightarrow F\left( x \right) = x + \ln \left( {{x^2} + 1} \right) + C\).

\(F\left( 0 \right) = 0\)\( \Leftrightarrow \)\(0 + \ln \left( {{0^2} + 1} \right) + C = 0 \Leftrightarrow C = 0\) \( \Rightarrow F\left( x \right) = x + \ln \left( {{x^2} + 1} \right)\).

Xét phương trình \(F\left( x \right) = x\left[ {1 + \log ({x^2} + 1)} \right]\).

Điều kiện: \(x \in \mathbb{R}\)

Phương trình \( \Leftrightarrow \ln \left( {{x^2} + 1} \right) = x\log \left( {{x^2} + 1} \right)\)\( \Leftrightarrow \ln 10.\log \left( {{x^2} + 1} \right) - x\log \left( {{x^2} + 1} \right) = 0\)\( \Leftrightarrow \log \left( {{x^2} + 1} \right).\left( {\ln 10 - x} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}\log \left( {{x^2} + 1} \right) = 0\\\ln 10 - x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} + 1 = 1\\x = \ln 10\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \ln 10\end{array} \right.\).

Vậy tổng bình phương các nghiệm của phương trình là \(T = {0^2} + {\left( {\ln 10} \right)^2} \approx 5,3\).

Lời giải

Ta có: \[f(x) = xf'(x) - 2{x^3} - 3{x^2} \Leftrightarrow xf'(x) - f(x) = 2{x^3} + 3{x^2} = {x^2}(2x + 3)\]

\[ \Leftrightarrow \frac{{xf'(x) - f(x)}}{{{x^2}}} = 2x + 3 \Leftrightarrow \int {{{\left( {\frac{{f(x)}}{x}} \right)}^\prime }} dx = \int {\left( {2x + 3} \right){\rm{d}}x}  \Leftrightarrow \frac{{f(x)}}{x} = {x^2} + 3x + C.\]

Do \[f(1) = 4 \Rightarrow 4 = 1 + 3 + C \Rightarrow C = 0 \Rightarrow f(x) = {x^3} + 3{x^2} \Rightarrow \]\[f(2) = 20.\]

Câu 4

a)   \(F'\left( x \right) = \frac{1}{{{x^2} - 4x + 3}}\).

Đúng
Sai

b)  \[f(x) = \frac{1}{{x - 3}} - \frac{1}{{x - 1}}\].

Đúng
Sai

c)   \(F(x) = \frac{1}{2}\ln \frac{{x - 3}}{{x - 1}} + C\).

Đúng
Sai
d)        Biết \(F(2) = 2\) và \(F( - 1) = 5\). Khi đó \(F\left( {\frac{3}{2}} \right) + F(4) < 10\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a)   \(F'(x) = {x^3} - 3{x^2} + 2x - 1\).

Đúng
Sai

b)  Hàm số \(y = \frac{1}{4}{x^4} - {x^3} + {x^2} - x\) là một nguyên hàm của hàm số \(f(x)\).

Đúng
Sai

c)   \(F(x) = \frac{1}{4}{x^4} - {x^3} + {x^2} - x\).

Đúng
Sai
d)        Biết \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) thỏa mãn \(F(0) = 1.\) Khi đó \(F(1) = \frac{5}{4}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP