Một chiếc ô tô đang chạy với vận tốc \[15m/s\] thì nhìn thấy chướng ngại vật trên đường cách đó \(50m\), người lái xe hãm phanh khẩn cấp. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 3t + 15\,\left( {m/s} \right)\), trong đó \(t\) (giây). Gọi \(s\left( t \right)\) là quãng đường xe ô tô đi được trong thời gian \(t\) (giây) kể từ lúc đạp phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô di chuyển được bao nhiêu mét?
Câu hỏi trong đề: Đề kiểm tra Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\(s\left( t \right) = \int {v\left( t \right)} {\rm{dt}} = \int {\left( { - 3t + 15} \right)} \,{\rm{dt}} = - \frac{{3{t^2}}}{2} + 15t + C\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t + C\)
Cho \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 3t + 15 = 0 \Rightarrow t = 5\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây.
Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:\(s\left( 5 \right) = - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi vận tốc của xe khi bắt đầu phanh là \({v_0}\) \(\left( {m/s} \right)\)
Vận tốc tại thời điểm \(t\) kể từ lúc bắt đầu phanh là: \(v\left( t \right) = \int {\left( { - 5} \right){\rm{dt}}} = - 5t + C\).
Vận tốc của vật tại thời điểm bắt đầu phanh xe là \({v_0}\,\left( {\,m/s} \right)\) nên ta có \(v\left( 0 \right) = {v_0} \Rightarrow C = {v_0} \Rightarrow v\left( t \right) = - 5t + {v_0}\)
Quãng đường vật đi được tại thời điểm \(t\) kể từ khi bắt đầu đạp phanh là \(S\left( t \right) = \int {v(t){\rm{dt}}} \)\( = \int {\left( { - 5t + {v_0}} \right){\rm{dt}}} = - \frac{5}{2}{t^2} + {v_0}t + C\).
Ta có \(S\left( 0 \right) = 0 \Rightarrow C = 0 \Rightarrow S\left( t \right) = - \frac{5}{2}{t^2} + {v_0}t\).
Khi xe dừng hẳn ta có \(v\left( t \right) = 0 \Leftrightarrow - 5t + {v_0} = 0 \Leftrightarrow t = \frac{{{v_0}}}{5}\).
Quãng đường xe đi được từ khi bắt đầu đạp phanh đến khi dừng hẳn là \(S = S\left( {\frac{{{v_0}}}{5}} \right) = - \frac{5}{2}{\left( {\frac{{{v_0}}}{5}} \right)^2} + \frac{{v_0^2}}{5} = \frac{{v_0^2}}{{10}}\) \(\left( m \right)\).
Quãng đường người lái xe đi từ khi nhìn thấy chướng ngại vật đến khi đạp phanh là \({v_0}\) \(\left( m \right)\).
Theo bài ra ta có phương trình \(\frac{{v_0^2}}{{10}} + {v_0} = 41,6\).
Giải phương trình ta được \(\left[ \begin{array}{l}{v_0} = 16\\{v_0} = - 26\end{array} \right.\).
Vậy vận tốc khi người lái xe bắt đầu phanh là \(16\,\,\left( {m/s} \right)\).
Câu 2
Lời giải
Câu 3
A. \(\frac{3}{2}{\ln ^2}\left( {3x + 1} \right) + \frac{{{2^x}}}{{\ln 2}} + 2024x + C\).
B. \(\frac{3}{2}{\ln ^2}\left( {3x + 1} \right) + {2^x}\ln 2 + 2024x + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(F'\left( x \right) = \frac{1}{{{x^2} - 4x + 3}}\).
b) \[f(x) = \frac{1}{{x - 3}} - \frac{1}{{x - 1}}\].
c) \(F(x) = \frac{1}{2}\ln \frac{{x - 3}}{{x - 1}} + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(F\left( x \right) = \frac{1}{2}{x^2} - \cos \left( {2x + 1} \right)\).
B. \(F\left( x \right) = \frac{1}{2}{x^2} - 2\cos \left( {2x + 1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.