Giả sử hàm số \(y = f\left( x \right);\,y = f'\left( x \right)\) liên tục, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( 1 \right) = 1\), \(f\left( x \right) = f'\left( x \right).\sqrt {3x} \), với mọi \(x > 0\). Tính \(f\left( 5 \right)\)? (Làm tròn kết quả đến hàng phần mười).
Câu hỏi trong đề: Đề kiểm tra Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Ta có :
\[f\left( x \right) = f'\left( x \right).\sqrt {3x} \]
\[ \Rightarrow \frac{{f'\left( x \right)}}{{f\left( x \right)}} = \frac{1}{{\sqrt {3x} }}\]
\[ \Rightarrow \ln f\left( x \right) = \frac{1}{{\sqrt 3 }}\int {\frac{1}{{\sqrt x }}{\rm{d}}x} \]
\[ \Rightarrow \ln f\left( x \right) = \frac{2}{{\sqrt 3 }}\sqrt x + C\]
\[ \Rightarrow f\left( x \right) = {e^{\frac{2}{{\sqrt 3 }}\sqrt x + C}}\]
Mà \(f\left( 1 \right) = 1\) nên \[1 = {e^{\frac{2}{{\sqrt 3 }} + C}} \Rightarrow C = - \frac{2}{{\sqrt 3 }}\]
\[ \Rightarrow f\left( x \right) = {e^{\frac{2}{{\sqrt 3 }}\sqrt x - \frac{2}{{\sqrt 3 }}}}\]
Suy ra \(f\left( 5 \right) = {e^{\frac{2}{{\sqrt 3 }}\sqrt 5 - \frac{2}{{\sqrt 3 }}}} = {e^{\frac{{2\sqrt 5 - 2}}{{\sqrt 3 }}}} \approx 4,2\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi vận tốc của xe khi bắt đầu phanh là \({v_0}\) \(\left( {m/s} \right)\)
Vận tốc tại thời điểm \(t\) kể từ lúc bắt đầu phanh là: \(v\left( t \right) = \int {\left( { - 5} \right){\rm{dt}}} = - 5t + C\).
Vận tốc của vật tại thời điểm bắt đầu phanh xe là \({v_0}\,\left( {\,m/s} \right)\) nên ta có \(v\left( 0 \right) = {v_0} \Rightarrow C = {v_0} \Rightarrow v\left( t \right) = - 5t + {v_0}\)
Quãng đường vật đi được tại thời điểm \(t\) kể từ khi bắt đầu đạp phanh là \(S\left( t \right) = \int {v(t){\rm{dt}}} \)\( = \int {\left( { - 5t + {v_0}} \right){\rm{dt}}} = - \frac{5}{2}{t^2} + {v_0}t + C\).
Ta có \(S\left( 0 \right) = 0 \Rightarrow C = 0 \Rightarrow S\left( t \right) = - \frac{5}{2}{t^2} + {v_0}t\).
Khi xe dừng hẳn ta có \(v\left( t \right) = 0 \Leftrightarrow - 5t + {v_0} = 0 \Leftrightarrow t = \frac{{{v_0}}}{5}\).
Quãng đường xe đi được từ khi bắt đầu đạp phanh đến khi dừng hẳn là \(S = S\left( {\frac{{{v_0}}}{5}} \right) = - \frac{5}{2}{\left( {\frac{{{v_0}}}{5}} \right)^2} + \frac{{v_0^2}}{5} = \frac{{v_0^2}}{{10}}\) \(\left( m \right)\).
Quãng đường người lái xe đi từ khi nhìn thấy chướng ngại vật đến khi đạp phanh là \({v_0}\) \(\left( m \right)\).
Theo bài ra ta có phương trình \(\frac{{v_0^2}}{{10}} + {v_0} = 41,6\).
Giải phương trình ta được \(\left[ \begin{array}{l}{v_0} = 16\\{v_0} = - 26\end{array} \right.\).
Vậy vận tốc khi người lái xe bắt đầu phanh là \(16\,\,\left( {m/s} \right)\).
Lời giải
Ta có \(f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{{x^2} + 1}} = 1 + \frac{{2x}}{{{x^2} + 1}} = 1 + \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{{x^2} + 1}} = 1 + {\left[ {\ln \left( {{x^2} + 1} \right)} \right]^\prime }\)
\( \Rightarrow \int {f(x){\rm{d}}x} = \int {1{\rm{d}}x} + \int {{{\left[ {\ln ({x^2} + 1)} \right]}^\prime }{\rm{d}}x} = x + \ln \left( {{x^2} + 1} \right) + C\)\( \Rightarrow F\left( x \right) = x + \ln \left( {{x^2} + 1} \right) + C\).
\(F\left( 0 \right) = 0\)\( \Leftrightarrow \)\(0 + \ln \left( {{0^2} + 1} \right) + C = 0 \Leftrightarrow C = 0\) \( \Rightarrow F\left( x \right) = x + \ln \left( {{x^2} + 1} \right)\).
Xét phương trình \(F\left( x \right) = x\left[ {1 + \log ({x^2} + 1)} \right]\).
Điều kiện: \(x \in \mathbb{R}\)
Phương trình \( \Leftrightarrow \ln \left( {{x^2} + 1} \right) = x\log \left( {{x^2} + 1} \right)\)\( \Leftrightarrow \ln 10.\log \left( {{x^2} + 1} \right) - x\log \left( {{x^2} + 1} \right) = 0\)\( \Leftrightarrow \log \left( {{x^2} + 1} \right).\left( {\ln 10 - x} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}\log \left( {{x^2} + 1} \right) = 0\\\ln 10 - x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} + 1 = 1\\x = \ln 10\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \ln 10\end{array} \right.\).
Vậy tổng bình phương các nghiệm của phương trình là \(T = {0^2} + {\left( {\ln 10} \right)^2} \approx 5,3\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) \(F'\left( x \right) = \frac{1}{{{x^2} - 4x + 3}}\).
b) \[f(x) = \frac{1}{{x - 3}} - \frac{1}{{x - 1}}\].
c) \(F(x) = \frac{1}{2}\ln \frac{{x - 3}}{{x - 1}} + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(F'(x) = {x^3} - 3{x^2} + 2x - 1\).
b) Hàm số \(y = \frac{1}{4}{x^4} - {x^3} + {x^2} - x\) là một nguyên hàm của hàm số \(f(x)\).
c) \(F(x) = \frac{1}{4}{x^4} - {x^3} + {x^2} - x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.