Một hình chữ nhật có chu vi \(278{\rm{\;m}}\), nếu giảm chiều dài \(21{\rm{\;m}}\) và tăng chiều rộng 10 \({\rm{m}}\) thì diện tích tăng \(715{\rm{\;}}{{\rm{m}}^2}\). Chiều dài hình chữ nhật là
Quảng cáo
Trả lời:
Chọn B
Gọi chiều dài hình chữ nhật là \(x({\rm{\;m}},x > 0)\), chiều rộng hình chữ nhật là \(139 - x\left( {{\rm{\;m}}} \right)\). Theo Câu ta có phương trình
\(\begin{array}{*{20}{c}}{\left( {x - 21} \right)\left( {139 - x + 10} \right) = x\left( {139 - x} \right) + 715}\\{ \Leftrightarrow x = 124.}\end{array}\)
Vậy chiều dài hình chữ nhật là \(124{\rm{\;m}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Phương trình \({x^2} - 2(m + 1)x + {m^2} - 3 = 0\) vô nghiềm khi và chỉ khi
\({\Delta ^\prime } < 0 \Leftrightarrow {(m + 1)^2} - \left( {{m^2} - 3} \right) < 0 \Leftrightarrow 2m + 4 < 0 \Leftrightarrow m < - 2\)
Câu 2
Lời giải
Chọn A
Gọi chiều dài hình chử nhật là \(x({\rm{\;cm}},x > 0)\). Khi đó, chiều rộng hình chử nhật là \(\frac{2}{3}x\left( {{\rm{\;cm}}} \right)\). Theo đầu Câu ta có phương trình
\(x \cdot \frac{2}{3}x = 5400 \Leftrightarrow {x^2} = 8100\)
Giải ra ta được \(x = 90(\) vì \(x > 0)\). Vậy chiều dài hình chử nhật là \(90{\rm{\;cm}}\), chiều rộng hình chử nhật là \(60{\rm{\;cm}}\). Do đó chu vi hình chưu nhật là \(300{\rm{\;cm}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.