Một thửa ruộng hình chữ nhật có diện tích là \(100{\rm{\;}}{{\rm{m}}^2}\). Tính độ dài chiều dài của thửa ruộng. Biết rằng nếu tăng chiều rộng của thửa ruộng lên \(2{\rm{\;m}}\) và giảm chiều dài \(5{\rm{\;m}}\) thì diện tích của thửa ruộng tăng thêm \(5{\rm{\;}}{{\rm{m}}^2}\).
Quảng cáo
Trả lời:
Chọn D
Gọi chiều dài là \(x({\rm{\;m}},x > 0)\), chiều rộng là \(\frac{{100}}{x}\left( {{\rm{\;m}}} \right)\). Theo Câu ta có phương trình
\(\left( {x - 5} \right)\left( {\frac{{100}}{x} + 2} \right) = 100 + 5 \Leftrightarrow 2{x^2} - 15x - 500 = 0\)
Giải phương trình ta được \(x = 20\) (thỏa mān) hoặc \(x = - 12,5\) (loại). Vậy chiều dài của mảnh đất hình chữ nhật là \(20{\rm{\;m}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A
Phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 3 = 0\) vô nghiệm khi \(\Delta ' < 0\).
Khi đó \({\left[ { - \left( {m + 1} \right)} \right]^2} - \left( {{m^2} - 3} \right) < 0\)
\({m^2} + 2m + 1 - m{}^2 + 3 < 0\)
\(2m < - 4\)
\(m < - 2.\)
Vậy để phương trình đã cho vô nghiệm thì \(m < - 2.\)
Câu 2
Lời giải
Chọn B
Gọi chiều dài hình chữ nhật là \(x({\rm{\;m}},x > 0)\), chiều rộng hình chữ nhật là \(139 - x\left( {{\rm{\;m}}} \right)\). Theo Câu ta có phương trình
\(\begin{array}{*{20}{c}}{\left( {x - 21} \right)\left( {139 - x + 10} \right) = x\left( {139 - x} \right) + 715}\\{ \Leftrightarrow x = 124.}\end{array}\)
Vậy chiều dài hình chữ nhật là \(124{\rm{\;m}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.