Câu hỏi:

30/01/2026 11 Lưu

Đường tròn tâm \(O\) nội tiếp hình vuông \(ABCD\), tiếp điểm trên \(AB\)\(M\). Một tiếp tuyến với \((O)\) cất các cạnh \(BC,CD\) lần lượt ở \(E,F\). Chứng minh rằng

a) Các tam giác \(DFO\)\(BOE\) đồng dạng.

b) \(ME\) song song với \(AF\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường tròn tâm \(O\) nội tiếp hình vuông \(ABCD\), tiếp điểm trên \(AB\) là \(M\). Một tiếp tuyến với \((O)\) cất các cạnh \(BC,CD\) lần lượt ở \(E,F\). Chứng minh rằng  a) Các tam giác \(DFO\) và \(BOE\) đồng dạng. (ảnh 1)

a)  Xét tam giác \(\Delta DFO\), ta có DOF^+DFO^+ODF^=180°

DOF^+DFO^=145° (do ODF^=45°)             (1)

Xét tứ giác \(DBEF\), ta có  

Mặt khác ta có \(FO,EO\) lần lượt là phân giác góc \(DFE\) và \(BEF\) nên ta có

DFO^=12DFE^  và BEO^=12BEF^

Suy ra DFO^+BEO^=145°  (2)

Từ (1) và (2) suy ra \(\widehat {DOF} = \widehat {BEO}\).

Xét tam giác \(DOF\) và tam giác \(BEO\), ta có

   + \(\widehat {ODF} = \widehat {OBE} = 45^\circ \);

   + \(\widehat {DOF} = \widehat {BEO}\) (chứng minh trên).

\( \Rightarrow \Delta DOF \sim \Delta BEO(\;{\rm{g}} - {\rm{g}})\)

b)  \(\Delta DOF\~\Delta BEO \Rightarrow \frac{{DF}}{{BO}} = \frac{{DO}}{{BE}} \Rightarrow DF \cdot BE = DO \cdot BO = \frac{{B{D^2}}}{4} = \frac{{A{B^2}}}{2} = BM \cdot AD.\)

\( \Rightarrow \frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\)

Xét tam giác \(ADF\) và \(EBM\), ta có

   + \(\widehat {ADF} = \widehat {MBE}\)

   + \(\frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\).

Suy ra \(\Delta ADF \sim \Delta EBM \Rightarrow \widehat {BME} = \widehat {AFD}\)

Mặt khác ta có \(\widehat {BAF} = \widehat {AFD}(AB//CD)\). Suy ra \(\widehat {BME} = \widehat {BAF}\) suy ra \(ME//ED\) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[n\] là số cạnh của đa giác đều.

Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]

nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].

Do đó \[4\left( {n - 2} \right) = 3n\].

Vậy \[n = 8\].

Lời giải

Cho ngũ giác \[ABCD (ảnh 1)

a) \(\Delta ABC\)\(\Delta BCD\)\(AB = BC\);\(\widehat {ABC} = \widehat {BCD}\);\(BC = CD\)

\( \Rightarrow \Delta ABC = \Delta BCD\left( {c.g.\,c} \right)\)\( \Rightarrow AC = BD\).

\(\Delta ABD\)\(\Delta ACD\)\(AB = DC\);\(AC = DB\); AD chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c.g.\,c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CDA}\)

\( \Rightarrow \Delta BAH = \Delta CDK\)\( \Rightarrow BH = CK\)\( \Rightarrow BC\,{\rm{//}}\,{\rm{CD}}\)

\( \Rightarrow {\rm{ABCD}}\,\)là hình thang cân

b) Chứng minh tương tự câu a, ta có \[ABCE\]là hình thang cân.

Ta có: \(\Delta ABC\)cân\( \Rightarrow \widehat {BAC} = \widehat {BCA}\),mà \(\widehat A = \widehat C\)\( \Rightarrow \widehat {CAE} = \widehat {ACD}\)

\( \Rightarrow \Delta AEC = \Delta CDA\left( {c.g.\,c} \right)\)\( \Rightarrow ACDE\)là hình thang cân

(Chứng minh tương tự câu a)

Ta có:

\(AB\,{\rm{//}}\,{\rm{CK}}\)(\[ABCD\] là hình thang cân)

\({\rm{BC}}\,{\rm{//}}\,{\rm{AK}}\)(\[ABCE\] là hình thang cân)

mà: \(AB = BC\). Suy ra \[ABCK\]là hình thoi\( \Rightarrow \widehat {{A_1}} = \widehat {{C_1}} = \widehat {{C_2}}\)

\[ACDE\]là hình thang cân\( \Rightarrow \widehat {{C_2}} = \widehat {{E_1}}\)\( \Rightarrow \widehat {{E_1}} = \widehat {{C_1}}\)\( \Rightarrow \widehat {{C_1}} = \widehat {{C_3}}\)

\( \Rightarrow \Delta ABC = \Delta CDE\)\( \Rightarrow \widehat {ABC} = \widehat {CDE}\)

Chứng minh tương tự, ta được: \(\widehat {BAE} = \widehat {AED}\)

Do đó: \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)\(AB = BC = CD = DE = EA\left( {gt} \right)\)

\( \Rightarrow ABCDE\)là ngũ giác đều

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP