Đường tròn tâm \(O\) nội tiếp hình vuông \(ABCD\), tiếp điểm trên \(AB\) là \(M\). Một tiếp tuyến với \((O)\) cất các cạnh \(BC,CD\) lần lượt ở \(E,F\). Chứng minh rằng
a) Các tam giác \(DFO\) và \(BOE\) đồng dạng.
b) \(ME\) song song với \(AF\).
Đường tròn tâm \(O\) nội tiếp hình vuông \(ABCD\), tiếp điểm trên \(AB\) là \(M\). Một tiếp tuyến với \((O)\) cất các cạnh \(BC,CD\) lần lượt ở \(E,F\). Chứng minh rằng
a) Các tam giác \(DFO\) và \(BOE\) đồng dạng.
b) \(ME\) song song với \(AF\).
Quảng cáo
Trả lời:

a) Xét tam giác \(\Delta DFO\), ta có
(do (1)
Xét tứ giác \(DBEF\), ta có
Mặt khác ta có \(FO,EO\) lần lượt là phân giác góc \(DFE\) và \(BEF\) nên ta có
Suy ra (2)
Từ (1) và (2) suy ra \(\widehat {DOF} = \widehat {BEO}\).
Xét tam giác \(DOF\) và tam giác \(BEO\), ta có
+ \(\widehat {ODF} = \widehat {OBE} = 45^\circ \);
+ \(\widehat {DOF} = \widehat {BEO}\) (chứng minh trên).
\( \Rightarrow \Delta DOF \sim \Delta BEO(\;{\rm{g}} - {\rm{g}})\)
b) \(\Delta DOF\~\Delta BEO \Rightarrow \frac{{DF}}{{BO}} = \frac{{DO}}{{BE}} \Rightarrow DF \cdot BE = DO \cdot BO = \frac{{B{D^2}}}{4} = \frac{{A{B^2}}}{2} = BM \cdot AD.\)
\( \Rightarrow \frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\)
Xét tam giác \(ADF\) và \(EBM\), ta có
+ \(\widehat {ADF} = \widehat {MBE}\)
+ \(\frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\).
Suy ra \(\Delta ADF \sim \Delta EBM \Rightarrow \widehat {BME} = \widehat {AFD}\)
Mặt khác ta có \(\widehat {BAF} = \widehat {AFD}(AB//CD)\). Suy ra \(\widehat {BME} = \widehat {BAF}\) suy ra \(ME//ED\) .
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[n\] là số cạnh của đa giác đều.
Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]
nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].
Do đó \[4\left( {n - 2} \right) = 3n\].
Vậy \[n = 8\].
Lời giải

a) \(\Delta ABC\)và \(\Delta BCD\)có \(AB = BC\);\(\widehat {ABC} = \widehat {BCD}\);\(BC = CD\)
\( \Rightarrow \Delta ABC = \Delta BCD\left( {c.g.\,c} \right)\)\( \Rightarrow AC = BD\).
\(\Delta ABD\)và \(\Delta ACD\)có \(AB = DC\);\(AC = DB\); AD chung
\( \Rightarrow \Delta ABD = \Delta ACD\left( {c.g.\,c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CDA}\)
\( \Rightarrow \Delta BAH = \Delta CDK\)\( \Rightarrow BH = CK\)\( \Rightarrow BC\,{\rm{//}}\,{\rm{CD}}\)
\( \Rightarrow {\rm{ABCD}}\,\)là hình thang cân
b) Chứng minh tương tự câu a, ta có \[ABCE\]là hình thang cân.
Ta có: \(\Delta ABC\)cân\( \Rightarrow \widehat {BAC} = \widehat {BCA}\),mà \(\widehat A = \widehat C\)\( \Rightarrow \widehat {CAE} = \widehat {ACD}\)
\( \Rightarrow \Delta AEC = \Delta CDA\left( {c.g.\,c} \right)\)\( \Rightarrow ACDE\)là hình thang cân
(Chứng minh tương tự câu a)
Ta có:
\(AB\,{\rm{//}}\,{\rm{CK}}\)(\[ABCD\] là hình thang cân)
\({\rm{BC}}\,{\rm{//}}\,{\rm{AK}}\)(\[ABCE\] là hình thang cân)
mà: \(AB = BC\). Suy ra \[ABCK\]là hình thoi\( \Rightarrow \widehat {{A_1}} = \widehat {{C_1}} = \widehat {{C_2}}\)
\[ACDE\]là hình thang cân\( \Rightarrow \widehat {{C_2}} = \widehat {{E_1}}\)\( \Rightarrow \widehat {{E_1}} = \widehat {{C_1}}\)\( \Rightarrow \widehat {{C_1}} = \widehat {{C_3}}\)
\( \Rightarrow \Delta ABC = \Delta CDE\)\( \Rightarrow \widehat {ABC} = \widehat {CDE}\)
Chứng minh tương tự, ta được: \(\widehat {BAE} = \widehat {AED}\)
Do đó: \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)và \(AB = BC = CD = DE = EA\left( {gt} \right)\)
\( \Rightarrow ABCDE\)là ngũ giác đều
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
