Câu hỏi:

30/01/2026 10 Lưu

Cho hình ngũ giác đều \(ABCDE\) có tâm \(O\).

a) Phép quay thuận chiều tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào?

b) Chỉ ra các phép quay tâm \(O\) giữ nguyên hình ngũ giác đều đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình ngũ giác đều \(ABCDE\) có tâm \(O\).  a) Phép quay thuận chiều tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào? (ảnh 1)

a) \(\widehat {AOC} = \frac{{360^\circ }}{5}.2 = 144^\circ \)

Phép quay thuận chiều \(144^\circ \) tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm \[D,E,A,B\]

b) Các phép quay tâm \(O\) giữ nguyên hình ngũ giác đều đã cho là:

Năm phép quay thuận chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \]lần lượt nhận các giá trị\[72^\circ ;144^\circ ;216^\circ ;288^\circ ;360^\circ \] .

Năm phép quay ngược chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị \[72^\circ ;144^\circ ;216^\circ ;288^\circ ;360^\circ \]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều ABC nội tiếp (ảnh 2)

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\)AOD^=60° nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).

Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)

Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)

Lại có AOB^=120° mà AOD^=60° (cmt) DOB^=60°(2)

Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.

Chứng minh tương tự các tam giác \(EOC\)\(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)

Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)

Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)

Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.

Lời giải

Gọi \[n\] là số cạnh của đa giác đều.

Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]

nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].

Do đó \[4\left( {n - 2} \right) = 3n\].

Vậy \[n = 8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP