Cho hình ngũ giác đều \(ABCDE\) có tâm \(O\).
a) Phép quay thuận chiều tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào?
b) Chỉ ra các phép quay tâm \(O\) giữ nguyên hình ngũ giác đều đã cho.
Cho hình ngũ giác đều \(ABCDE\) có tâm \(O\).
a) Phép quay thuận chiều tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào?
b) Chỉ ra các phép quay tâm \(O\) giữ nguyên hình ngũ giác đều đã cho.
Quảng cáo
Trả lời:
![Cho hình ngũ giác đều \(ABCDE\) có tâm \(O\). a) Phép quay thuận chiều tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/17-1769711223.png)
a) \(\widehat {AOC} = \frac{{360^\circ }}{5}.2 = 144^\circ \)
Phép quay thuận chiều \(144^\circ \) tâm \(O\) biến điểm \(A\) thành điểm \[C\] thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm \[D,E,A,B\]
b) Các phép quay tâm \(O\) giữ nguyên hình ngũ giác đều đã cho là:
⦁ Năm phép quay thuận chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \]lần lượt nhận các giá trị\[72^\circ ;144^\circ ;216^\circ ;288^\circ ;360^\circ \] .
⦁ Năm phép quay ngược chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị \[72^\circ ;144^\circ ;216^\circ ;288^\circ ;360^\circ \]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\) và nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).
Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)
Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)
Lại có mà (cmt)
Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.
Chứng minh tương tự các tam giác \(EOC\) và \(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)
Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)
Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)
Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.
Lời giải
Gọi \[n\] là số cạnh của đa giác đều.
Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]
nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].
Do đó \[4\left( {n - 2} \right) = 3n\].
Vậy \[n = 8\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
