20 bài tập Toán 9 Kết nối tri thức Bài 30. Đa giác đều và phép quay có đáp án
4.6 0 lượt thi 20 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
13 bài tập Xác suất của biến cố (có lời giải)
5 bài tập Kết quả thuận lợi cho một biến cố (có lời giải)
7 bài tập Không gian mẫu. Số phần tử của không gian mẫu (có lời giải)
5 bài tập Phép thử ngẫu nhiên (có lời giải)
Danh sách câu hỏi:
Lời giải
Mỗi góc của ngũ giác đều bằng: \(\frac{{(5 - 2){{.180}^0}}}{5}\, = \,{108^0}\)
Mỗi góc của ngũ lục đều bằng: \(\frac{{(6 - 2){{.180}^0}}}{6}\, = \,{120^0}\)
Mỗi góc của bát giác đều bằng: \(\frac{{(8 - 2){{.180}^0}}}{8}\, = \,{135^0}\)
Lời giải
Gọi \[n\] là số cạnh của đa giác đều.
Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]
nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].
Do đó \[4\left( {n - 2} \right) = 3n\].
Vậy \[n = 8\].
Lời giải
![Bài 3. Cho tam giác đều \[ABC\], các đường cao \[AD\], \[BE\], \[CF\] cắt nhau tại \[H\]. Gọi \[I\], \[K\], \[M\] theo thứ tự là trung điểm của \[HA\], \[HB\], \[HC\]. Chứng minh rằng \[DKFIEM\] là lục giác đều. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/10-1769710972.png)
Xét \[\Delta HDC\] vuông tại \[D\], \[DM\] là đường trung tuyến ứng với cạnh huyền nên \[DM = HM\]. Ta lại có \[\widehat {{C_1}} = 30^\circ \] nên \[\widehat {{H_1}} = 60^\circ \]. Do đó \[\Delta HDM\] là tam giác đều.
Tương tự các tam giác \[HME\], \[HEI\], \[HIF\], \[HFK\], \[HKD\] là các tam giác đều.
Lục giác \[DKFIEM\] có các cạnh bằng nhau và các góc bằng nhau (bằng \[120^\circ \]) nên là lục giác đều.
Lời giải
a) Từ mỗi đỉnh của hình n – giác lồi. kẻ được \[n - 1\] đoạn thẳng đến các đỉnh còn lại, trong đó có hai đoạn thẳng là cạnh của đa giác, \[n - 3\] đoạn thẳng là đường chéo.
Đa giác có \[n\] đỉnh nên kẻ được \[n\left( {n - 3} \right)\] đường chéo, trong đó mỗi đường chéo tính 2 lần. Vậy số đường chéo của hình \[n\]- giác lồi là \[\frac{{n\left( {n - 3} \right)}}{2}\].
b) Giải phương trình \[\frac{{n\left( {n - 3} \right)}}{2} = n\]. Ta được \[n = 5\]
Lời giải
![Bài 5. Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/11-1769711011.png)
Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).
Từ đó \[AM = AN\] và \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hình ngũ giác đều \[ABCDE\]có tâm \(O\) (Hình vẽ). a) Phép quay ngược chiều tâm O biến điểm A thành điểm B thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào? b) Chỉ ra ba phép quay tâm O giữ nguyên hình ngũ giác đều đã cho. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/19-1769711285.png)





