Cho ngũ giác \[ABCDE\]có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C\).
a) Chứng minh tứ giác \[ABCD\]là hình thang cân.
b) Chứng minh ngũ giác \[ABCDE\]là ngũ giác đều.
Cho ngũ giác \[ABCDE\]có các cạnh bằng nhau và \(\widehat A = \widehat B = \widehat C\).
a) Chứng minh tứ giác \[ABCD\]là hình thang cân.
b) Chứng minh ngũ giác \[ABCDE\]là ngũ giác đều.
Quảng cáo
Trả lời:

a) \(\Delta ABC\)và \(\Delta BCD\)có \(AB = BC\);\(\widehat {ABC} = \widehat {BCD}\);\(BC = CD\)
\( \Rightarrow \Delta ABC = \Delta BCD\left( {c.g.\,c} \right)\)\( \Rightarrow AC = BD\).
\(\Delta ABD\)và \(\Delta ACD\)có \(AB = DC\);\(AC = DB\); AD chung
\( \Rightarrow \Delta ABD = \Delta ACD\left( {c.g.\,c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CDA}\)
\( \Rightarrow \Delta BAH = \Delta CDK\)\( \Rightarrow BH = CK\)\( \Rightarrow BC\,{\rm{//}}\,{\rm{CD}}\)
\( \Rightarrow {\rm{ABCD}}\,\)là hình thang cân
b) Chứng minh tương tự câu a, ta có \[ABCE\]là hình thang cân.
Ta có: \(\Delta ABC\)cân\( \Rightarrow \widehat {BAC} = \widehat {BCA}\),mà \(\widehat A = \widehat C\)\( \Rightarrow \widehat {CAE} = \widehat {ACD}\)
\( \Rightarrow \Delta AEC = \Delta CDA\left( {c.g.\,c} \right)\)\( \Rightarrow ACDE\)là hình thang cân
(Chứng minh tương tự câu a)
Ta có:
\(AB\,{\rm{//}}\,{\rm{CK}}\)(\[ABCD\] là hình thang cân)
\({\rm{BC}}\,{\rm{//}}\,{\rm{AK}}\)(\[ABCE\] là hình thang cân)
mà: \(AB = BC\). Suy ra \[ABCK\]là hình thoi\( \Rightarrow \widehat {{A_1}} = \widehat {{C_1}} = \widehat {{C_2}}\)
\[ACDE\]là hình thang cân\( \Rightarrow \widehat {{C_2}} = \widehat {{E_1}}\)\( \Rightarrow \widehat {{E_1}} = \widehat {{C_1}}\)\( \Rightarrow \widehat {{C_1}} = \widehat {{C_3}}\)
\( \Rightarrow \Delta ABC = \Delta CDE\)\( \Rightarrow \widehat {ABC} = \widehat {CDE}\)
Chứng minh tương tự, ta được: \(\widehat {BAE} = \widehat {AED}\)
Do đó: \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)và \(AB = BC = CD = DE = EA\left( {gt} \right)\)
\( \Rightarrow ABCDE\)là ngũ giác đều
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\) và nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).
Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)
Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)
Lại có mà (cmt)
Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.
Chứng minh tương tự các tam giác \(EOC\) và \(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)
Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)
Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)
Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.
Lời giải
Gọi \[n\] là số cạnh của đa giác đều.
Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]
nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].
Do đó \[4\left( {n - 2} \right) = 3n\].
Vậy \[n = 8\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
