Cho vòng quay mặt trời gồm mười hai cabin như vẽ bên dưới. Hỏi để cabin \(A\) di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?

Quảng cáo
Trả lời:
Vì vòng quay mặt trời gồm mười hai cabin nên hai cabin liền kề cách nhau một góc bằng: \(360^\circ :12 = 30^\circ \)
Do vậy để cabin \(A\) di chuyển đến vị trí cao nhất thì vòng quay thuận chiều kim đồng hồ quanh tâm một góc bằng: \(30^\circ .4 = 120^\circ \)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[n\] là số cạnh của đa giác đều.
Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]
nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].
Do đó \[4\left( {n - 2} \right) = 3n\].
Vậy \[n = 8\].
Lời giải

a) \(\Delta ABC\)và \(\Delta BCD\)có \(AB = BC\);\(\widehat {ABC} = \widehat {BCD}\);\(BC = CD\)
\( \Rightarrow \Delta ABC = \Delta BCD\left( {c.g.\,c} \right)\)\( \Rightarrow AC = BD\).
\(\Delta ABD\)và \(\Delta ACD\)có \(AB = DC\);\(AC = DB\); AD chung
\( \Rightarrow \Delta ABD = \Delta ACD\left( {c.g.\,c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CDA}\)
\( \Rightarrow \Delta BAH = \Delta CDK\)\( \Rightarrow BH = CK\)\( \Rightarrow BC\,{\rm{//}}\,{\rm{CD}}\)
\( \Rightarrow {\rm{ABCD}}\,\)là hình thang cân
b) Chứng minh tương tự câu a, ta có \[ABCE\]là hình thang cân.
Ta có: \(\Delta ABC\)cân\( \Rightarrow \widehat {BAC} = \widehat {BCA}\),mà \(\widehat A = \widehat C\)\( \Rightarrow \widehat {CAE} = \widehat {ACD}\)
\( \Rightarrow \Delta AEC = \Delta CDA\left( {c.g.\,c} \right)\)\( \Rightarrow ACDE\)là hình thang cân
(Chứng minh tương tự câu a)
Ta có:
\(AB\,{\rm{//}}\,{\rm{CK}}\)(\[ABCD\] là hình thang cân)
\({\rm{BC}}\,{\rm{//}}\,{\rm{AK}}\)(\[ABCE\] là hình thang cân)
mà: \(AB = BC\). Suy ra \[ABCK\]là hình thoi\( \Rightarrow \widehat {{A_1}} = \widehat {{C_1}} = \widehat {{C_2}}\)
\[ACDE\]là hình thang cân\( \Rightarrow \widehat {{C_2}} = \widehat {{E_1}}\)\( \Rightarrow \widehat {{E_1}} = \widehat {{C_1}}\)\( \Rightarrow \widehat {{C_1}} = \widehat {{C_3}}\)
\( \Rightarrow \Delta ABC = \Delta CDE\)\( \Rightarrow \widehat {ABC} = \widehat {CDE}\)
Chứng minh tương tự, ta được: \(\widehat {BAE} = \widehat {AED}\)
Do đó: \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)và \(AB = BC = CD = DE = EA\left( {gt} \right)\)
\( \Rightarrow ABCDE\)là ngũ giác đều
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
