Cho vòng quay mặt trời gồm mười hai cabin như vẽ bên dưới. Hỏi để cabin \(A\) di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?

Quảng cáo
Trả lời:
Vì vòng quay mặt trời gồm mười hai cabin nên hai cabin liền kề cách nhau một góc bằng: \(360^\circ :12 = 30^\circ \)
Do vậy để cabin \(A\) di chuyển đến vị trí cao nhất thì vòng quay thuận chiều kim đồng hồ quanh tâm một góc bằng: \(30^\circ .4 = 120^\circ \)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác \(\Delta DFO\), ta có
(do (1)
Xét tứ giác \(DBEF\), ta có
Mặt khác ta có \(FO,EO\) lần lượt là phân giác góc \(DFE\) và \(BEF\) nên ta có
Suy ra (2)
Từ (1) và (2) suy ra \(\widehat {DOF} = \widehat {BEO}\).
Xét tam giác \(DOF\) và tam giác \(BEO\), ta có
+ \(\widehat {ODF} = \widehat {OBE} = 45^\circ \);
+ \(\widehat {DOF} = \widehat {BEO}\) (chứng minh trên).
\( \Rightarrow \Delta DOF \sim \Delta BEO(\;{\rm{g}} - {\rm{g}})\)
b) \(\Delta DOF\~\Delta BEO \Rightarrow \frac{{DF}}{{BO}} = \frac{{DO}}{{BE}} \Rightarrow DF \cdot BE = DO \cdot BO = \frac{{B{D^2}}}{4} = \frac{{A{B^2}}}{2} = BM \cdot AD.\)
\( \Rightarrow \frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\)
Xét tam giác \(ADF\) và \(EBM\), ta có
+ \(\widehat {ADF} = \widehat {MBE}\)
+ \(\frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\).
Suy ra \(\Delta ADF \sim \Delta EBM \Rightarrow \widehat {BME} = \widehat {AFD}\)
Mặt khác ta có \(\widehat {BAF} = \widehat {AFD}(AB//CD)\). Suy ra \(\widehat {BME} = \widehat {BAF}\) suy ra \(ME//ED\) .
Lời giải
![Bài 5. Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/11-1769711011.png)
Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).
Từ đó \[AM = AN\] và \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

