Câu hỏi:

30/01/2026 10 Lưu

Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC.

Bài 7.	Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Bài 7.	Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC.  (ảnh 2)

Theo công thức tính góc của đa giác đều, ta có:

\(\widehat {ADB} = \frac{{\left( {6 - 2} \right){{.180}^0}}}{6} = {120^0} \Rightarrow \widehat {DAB} = \widehat {DBA} = {30^0};\)

\(\widehat {ADC} = \frac{{\left( {5 - 2} \right){{180}^0}}}{5} = {108^0} \Rightarrow \widehat {DAC} = \widehat {DCA} = {36^0};\)  

Suy ra \(\widehat {BDC} = {360^0} - {120^0} - {108^0} = {132^0}\) .

Ta có ∆BDC \[\left( {DB = DC} \right)\] cân tại D. Do đó \(\widehat {DBC} = \widehat {DCB} = \frac{{{{180}^0} - {{132}^0}}}{2} = {24^0}\) .

Suy ra \(\widehat {BAC} = {30^0} + {36^0} = {66^0};\widehat {{\rm{ }}ABC} = {30^0} + {24^0} = {54^0};\widehat {{\rm{ }}BCA} = {24^0} + {36^0} = {60^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[n\] là số cạnh của đa giác đều.

Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]

nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].

Do đó \[4\left( {n - 2} \right) = 3n\].

Vậy \[n = 8\].

Lời giải

Cho ngũ giác \[ABCD (ảnh 1)

a) \(\Delta ABC\)\(\Delta BCD\)\(AB = BC\);\(\widehat {ABC} = \widehat {BCD}\);\(BC = CD\)

\( \Rightarrow \Delta ABC = \Delta BCD\left( {c.g.\,c} \right)\)\( \Rightarrow AC = BD\).

\(\Delta ABD\)\(\Delta ACD\)\(AB = DC\);\(AC = DB\); AD chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c.g.\,c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CDA}\)

\( \Rightarrow \Delta BAH = \Delta CDK\)\( \Rightarrow BH = CK\)\( \Rightarrow BC\,{\rm{//}}\,{\rm{CD}}\)

\( \Rightarrow {\rm{ABCD}}\,\)là hình thang cân

b) Chứng minh tương tự câu a, ta có \[ABCE\]là hình thang cân.

Ta có: \(\Delta ABC\)cân\( \Rightarrow \widehat {BAC} = \widehat {BCA}\),mà \(\widehat A = \widehat C\)\( \Rightarrow \widehat {CAE} = \widehat {ACD}\)

\( \Rightarrow \Delta AEC = \Delta CDA\left( {c.g.\,c} \right)\)\( \Rightarrow ACDE\)là hình thang cân

(Chứng minh tương tự câu a)

Ta có:

\(AB\,{\rm{//}}\,{\rm{CK}}\)(\[ABCD\] là hình thang cân)

\({\rm{BC}}\,{\rm{//}}\,{\rm{AK}}\)(\[ABCE\] là hình thang cân)

mà: \(AB = BC\). Suy ra \[ABCK\]là hình thoi\( \Rightarrow \widehat {{A_1}} = \widehat {{C_1}} = \widehat {{C_2}}\)

\[ACDE\]là hình thang cân\( \Rightarrow \widehat {{C_2}} = \widehat {{E_1}}\)\( \Rightarrow \widehat {{E_1}} = \widehat {{C_1}}\)\( \Rightarrow \widehat {{C_1}} = \widehat {{C_3}}\)

\( \Rightarrow \Delta ABC = \Delta CDE\)\( \Rightarrow \widehat {ABC} = \widehat {CDE}\)

Chứng minh tương tự, ta được: \(\widehat {BAE} = \widehat {AED}\)

Do đó: \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)\(AB = BC = CD = DE = EA\left( {gt} \right)\)

\( \Rightarrow ABCDE\)là ngũ giác đều

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP