Câu hỏi:

30/01/2026 10 Lưu

Một cái gương hình lục giác đều có các đỉnh nằm trên một hình tròn bằng gỗ đường kính 20 cm. Tính diện tích gương.

Một cái gương hình lục giác đều có các đỉnh nằm trên một hình tròn bằng gỗ đường kính 20 cm. Tính diện tích gương. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bán kính hình tròn: \(20:2 = 10\left( {\;cm} \right)\).

\(\Delta OAB\) là tam giác đều nên diện tích tam giác là: \(\frac{{{{10}^2}\sqrt 3 }}{4} = 25\sqrt 3 \left( {\;c{m^2}} \right)\).

Diện tích gương là \(25\sqrt 3 .6 \approx 260\left( {\;c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[n\] là số cạnh của đa giác đều.

Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]

nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].

Do đó \[4\left( {n - 2} \right) = 3n\].

Vậy \[n = 8\].

Lời giải

Cho ngũ giác \[ABCD (ảnh 1)

a) \(\Delta ABC\)\(\Delta BCD\)\(AB = BC\);\(\widehat {ABC} = \widehat {BCD}\);\(BC = CD\)

\( \Rightarrow \Delta ABC = \Delta BCD\left( {c.g.\,c} \right)\)\( \Rightarrow AC = BD\).

\(\Delta ABD\)\(\Delta ACD\)\(AB = DC\);\(AC = DB\); AD chung

\( \Rightarrow \Delta ABD = \Delta ACD\left( {c.g.\,c} \right)\)\( \Rightarrow \widehat {BAD} = \widehat {CDA}\)

\( \Rightarrow \Delta BAH = \Delta CDK\)\( \Rightarrow BH = CK\)\( \Rightarrow BC\,{\rm{//}}\,{\rm{CD}}\)

\( \Rightarrow {\rm{ABCD}}\,\)là hình thang cân

b) Chứng minh tương tự câu a, ta có \[ABCE\]là hình thang cân.

Ta có: \(\Delta ABC\)cân\( \Rightarrow \widehat {BAC} = \widehat {BCA}\),mà \(\widehat A = \widehat C\)\( \Rightarrow \widehat {CAE} = \widehat {ACD}\)

\( \Rightarrow \Delta AEC = \Delta CDA\left( {c.g.\,c} \right)\)\( \Rightarrow ACDE\)là hình thang cân

(Chứng minh tương tự câu a)

Ta có:

\(AB\,{\rm{//}}\,{\rm{CK}}\)(\[ABCD\] là hình thang cân)

\({\rm{BC}}\,{\rm{//}}\,{\rm{AK}}\)(\[ABCE\] là hình thang cân)

mà: \(AB = BC\). Suy ra \[ABCK\]là hình thoi\( \Rightarrow \widehat {{A_1}} = \widehat {{C_1}} = \widehat {{C_2}}\)

\[ACDE\]là hình thang cân\( \Rightarrow \widehat {{C_2}} = \widehat {{E_1}}\)\( \Rightarrow \widehat {{E_1}} = \widehat {{C_1}}\)\( \Rightarrow \widehat {{C_1}} = \widehat {{C_3}}\)

\( \Rightarrow \Delta ABC = \Delta CDE\)\( \Rightarrow \widehat {ABC} = \widehat {CDE}\)

Chứng minh tương tự, ta được: \(\widehat {BAE} = \widehat {AED}\)

Do đó: \(\widehat A = \widehat B = \widehat C = \widehat D = \widehat E\)\(AB = BC = CD = DE = EA\left( {gt} \right)\)

\( \Rightarrow ABCDE\)là ngũ giác đều

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP