Câu hỏi:

03/02/2026 26 Lưu

Chứng minh rằng tổng độ dài các cạnh của một ngũ giác lồi bé hơn tổng độ dài các đường chéo của nó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chứng minh rằng tổng độ dài các cạnh của một ngũ giác lồi bé hơn tổng độ dài các đường chéo của nó.  (ảnh 1)

Áp dụng tính chất về quan hệ các cạnh của tam giác, ta có:

\(AB + BC + CD + DE + EA < \left( {AN + NB} \right) + \left( {BP + PC} \right)\)   

 \( + \left( {CQ + QD} \right) + \left( {DK + KE} \right) + \left( {EM + MA} \right)\) \(\left( 1 \right)\)

Mặt khác: \(AN + PC < AC\);\(BP + DQ < BD\);\(CQ + KE < CE\);\(DK + MA < DA\);\(EM + NB < EB\)\(\left( 2 \right)\)

Từ \(\left( 1 \right)\)và \(\left( 2 \right)\)suy ra điều phải chứng minh

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường tròn tâm \(O\) nội tiếp hình vuông \(ABCD\), tiếp điểm trên \(AB\) là \(M\). Một tiếp tuyến với \((O)\) cất các cạnh \(BC,CD\) lần lượt ở \(E,F\). Chứng minh rằng  a) Các tam giác \(DFO\) và \(BOE\) đồng dạng. (ảnh 1)

a)  Xét tam giác \(\Delta DFO\), ta có DOF^+DFO^+ODF^=180°

DOF^+DFO^=145° (do ODF^=45°)             (1)

Xét tứ giác \(DBEF\), ta có  

Mặt khác ta có \(FO,EO\) lần lượt là phân giác góc \(DFE\) và \(BEF\) nên ta có

DFO^=12DFE^  và BEO^=12BEF^

Suy ra DFO^+BEO^=145°  (2)

Từ (1) và (2) suy ra \(\widehat {DOF} = \widehat {BEO}\).

Xét tam giác \(DOF\) và tam giác \(BEO\), ta có

   + \(\widehat {ODF} = \widehat {OBE} = 45^\circ \);

   + \(\widehat {DOF} = \widehat {BEO}\) (chứng minh trên).

\( \Rightarrow \Delta DOF \sim \Delta BEO(\;{\rm{g}} - {\rm{g}})\)

b)  \(\Delta DOF\~\Delta BEO \Rightarrow \frac{{DF}}{{BO}} = \frac{{DO}}{{BE}} \Rightarrow DF \cdot BE = DO \cdot BO = \frac{{B{D^2}}}{4} = \frac{{A{B^2}}}{2} = BM \cdot AD.\)

\( \Rightarrow \frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\)

Xét tam giác \(ADF\) và \(EBM\), ta có

   + \(\widehat {ADF} = \widehat {MBE}\)

   + \(\frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\).

Suy ra \(\Delta ADF \sim \Delta EBM \Rightarrow \widehat {BME} = \widehat {AFD}\)

Mặt khác ta có \(\widehat {BAF} = \widehat {AFD}(AB//CD)\). Suy ra \(\widehat {BME} = \widehat {BAF}\) suy ra \(ME//ED\) .

Lời giải

Bài 5.	Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)

Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).

Từ đó \[AM = AN\]\[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP