Câu hỏi:

30/01/2026 11 Lưu

Cho hình ngũ giác đều \[ABCDE\]có tâm \(O\) (Hình vẽ).

Cho hình ngũ giác đều \[ABCDE\]có tâm \(O\) (Hình vẽ).   a) Phép quay ngược chiều tâm O biến điểm A thành điểm B thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào? b) Chỉ ra ba phép quay tâm O giữ nguyên hình ngũ giác đều đã cho. (ảnh 1)

a) Phép quay ngược chiều tâm O biến điểm A thành điểm B thì các điểm \(B,C,D,E\) tương ứng biến thành các điểm nào?

b) Chỉ ra ba phép quay tâm O giữ nguyên hình ngũ giác đều đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phép quay ngược chiều \({72^^\circ }\) tâm O biến điểm A biến B thì các điểm \(B,C,D,E\) lần lượt biến thành các điểm \(C,D,E\)và A .

b) Ba phép quay tâm O giữ nguyên hình ngũ giác đều:

1. Phép quay ngược chiều \({144^^\circ }\);

2. Phép quay ngược chiều \({216^^\circ }\);

3. Phép quay thuận chiều \({72^^\circ }\).

Bạn hãy tìm thêm những phép quay còn lại giữ nguyên hình ngũ giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều ABC nội tiếp (ảnh 2)

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\)AOD^=60° nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).

Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)

Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)

Lại có AOB^=120° mà AOD^=60° (cmt) DOB^=60°(2)

Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.

Chứng minh tương tự các tam giác \(EOC\)\(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)

Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)

Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)

Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.

Lời giải

Gọi \[n\] là số cạnh của đa giác đều.

Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]

nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].

Do đó \[4\left( {n - 2} \right) = 3n\].

Vậy \[n = 8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP