Cho tam giác đều \[ABC\], các đường cao \[AD\], \[BE\], \[CF\] cắt nhau tại \[H\]. Gọi \[I\], \[K\], \[M\] theo thứ tự là trung điểm của \[HA\], \[HB\], \[HC\]. Chứng minh rằng \[DKFIEM\] là lục giác đều.
Cho tam giác đều \[ABC\], các đường cao \[AD\], \[BE\], \[CF\] cắt nhau tại \[H\]. Gọi \[I\], \[K\], \[M\] theo thứ tự là trung điểm của \[HA\], \[HB\], \[HC\]. Chứng minh rằng \[DKFIEM\] là lục giác đều.
Quảng cáo
Trả lời:
![Bài 3. Cho tam giác đều \[ABC\], các đường cao \[AD\], \[BE\], \[CF\] cắt nhau tại \[H\]. Gọi \[I\], \[K\], \[M\] theo thứ tự là trung điểm của \[HA\], \[HB\], \[HC\]. Chứng minh rằng \[DKFIEM\] là lục giác đều. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/10-1769710972.png)
Xét \[\Delta HDC\] vuông tại \[D\], \[DM\] là đường trung tuyến ứng với cạnh huyền nên \[DM = HM\]. Ta lại có \[\widehat {{C_1}} = 30^\circ \] nên \[\widehat {{H_1}} = 60^\circ \]. Do đó \[\Delta HDM\] là tam giác đều.
Tương tự các tam giác \[HME\], \[HEI\], \[HIF\], \[HFK\], \[HKD\] là các tam giác đều.
Lục giác \[DKFIEM\] có các cạnh bằng nhau và các góc bằng nhau (bằng \[120^\circ \]) nên là lục giác đều.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác \(\Delta DFO\), ta có
(do (1)
Xét tứ giác \(DBEF\), ta có
Mặt khác ta có \(FO,EO\) lần lượt là phân giác góc \(DFE\) và \(BEF\) nên ta có
Suy ra (2)
Từ (1) và (2) suy ra \(\widehat {DOF} = \widehat {BEO}\).
Xét tam giác \(DOF\) và tam giác \(BEO\), ta có
+ \(\widehat {ODF} = \widehat {OBE} = 45^\circ \);
+ \(\widehat {DOF} = \widehat {BEO}\) (chứng minh trên).
\( \Rightarrow \Delta DOF \sim \Delta BEO(\;{\rm{g}} - {\rm{g}})\)
b) \(\Delta DOF\~\Delta BEO \Rightarrow \frac{{DF}}{{BO}} = \frac{{DO}}{{BE}} \Rightarrow DF \cdot BE = DO \cdot BO = \frac{{B{D^2}}}{4} = \frac{{A{B^2}}}{2} = BM \cdot AD.\)
\( \Rightarrow \frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\)
Xét tam giác \(ADF\) và \(EBM\), ta có
+ \(\widehat {ADF} = \widehat {MBE}\)
+ \(\frac{{BM}}{{DF}} = \frac{{BE}}{{AD}}\).
Suy ra \(\Delta ADF \sim \Delta EBM \Rightarrow \widehat {BME} = \widehat {AFD}\)
Mặt khác ta có \(\widehat {BAF} = \widehat {AFD}(AB//CD)\). Suy ra \(\widehat {BME} = \widehat {BAF}\) suy ra \(ME//ED\) .
Lời giải
![Bài 5. Cho lục giác đều \[ABCDEF\]. Gọi \[M\] là trung điểm của \[EF\], \[N\] là trung điểm của \[BD\]. Chứng minh rằng \[AMN\] là tam giác đều. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/11-1769711011.png)
Gọi \[O\] là giao điểm của \[AD\], \[BE\], \[CF\]. Dễ dàng chứng minh \[N\] là trung điểm của \[OC\], \[\Delta AFM = \Delta AON\] (c.g.c).
Từ đó \[AM = AN\] và \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] là tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


