Một viên gạch hình lục giác đều có diện tích bề mặt là \(259,8\;c{m^2}\). Hãy tính độ dài cạnh viên gạch (kết quả làm tròn đến hàng đơn vị).

Một viên gạch hình lục giác đều có diện tích bề mặt là \(259,8\;c{m^2}\). Hãy tính độ dài cạnh viên gạch (kết quả làm tròn đến hàng đơn vị).

Quảng cáo
Trả lời:
Diện tích là \(259,8:6 = 43,3\left( {\;c{m^2}} \right)\). Ta có \(\widehat {FOE} = 360^\circ :6 = 60^\circ \).
Do đó \(\widehat {OEH} = 60^\circ \) ( \(\Delta OFE\) là tam giác đều). Diện tích \(\Delta OFE:S = \frac{1}{2}.OH.EF = \frac{1}{2}EF.\sqrt {O{E^2} - H{E^2}} \).
Mà \(OE = EF;HE = \frac{1}{2}EF\).
Nên \(S = \frac{1}{2} \cdot EF \cdot \sqrt {F{E^2} - {{\left( {\frac{1}{2}EF} \right)}^2}} = \frac{1}{2}.EF.\sqrt {F{E^2} - \frac{1}{4}F{E^2}} = \frac{1}{2}.EF.\sqrt {\frac{3}{4}F{E^2}} = \frac{{F{E^2}}}{4}\sqrt 3 \).
Suy ra \(43,3 = \frac{{F{E^2}}}{4}\sqrt 3 \Rightarrow F{E^2} = \frac{{43,3.4}}{{\sqrt 3 }} \approx 100 \Rightarrow FE = \sqrt {100} = 10\left( {\;cm} \right)\).
Lưu ý: Diện tích tam giác đều có cạnh \(a\) là \(S = \frac{{{a^2}\sqrt 3 }}{4}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\) và nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).
Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)
Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)
Lại có mà (cmt)
Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.
Chứng minh tương tự các tam giác \(EOC\) và \(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)
Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)
Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)
Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.
Lời giải
Gọi \[n\] là số cạnh của đa giác đều.
Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]
nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].
Do đó \[4\left( {n - 2} \right) = 3n\].
Vậy \[n = 8\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
