Câu hỏi:

30/01/2026 10 Lưu

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó.

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vòng trong của mái giếng trời hình hoa sen của nhà ga Bến Thành (Thành phố Hồ Chí Minh) có dạng đa giác đều 12 cạnh (Hình vẽ). Hãy chỉ ra bốn phép quay biến đa giác đều đó thành chính nó. (ảnh 2)

Đa giác đều 12 cạnh \[ABCDEFGHIKLM\] nội tiếp đường tròn \(\left( O \right)\) (Xem hình vẽ).

Ta có: AOB^=360°12=30° và AOB^=BOC^=COD^=DOE^==30°

\(OA = OB = OC = OD = \ldots \) (bán kính đường tròn ngoại tiếp)

Ta chọn phép quay thuận chiều (hoặc ngược chiều) góc quay 30°,60°,90°,120° biến đa giác đã cho thành chính nó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều ABC nội tiếp (ảnh 2)

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\)AOD^=60° nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).

Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)

Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)

Lại có AOB^=120° mà AOD^=60° (cmt) DOB^=60°(2)

Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.

Chứng minh tương tự các tam giác \(EOC\)\(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)

Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)

Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)

Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.

Lời giải

Gọi \[n\] là số cạnh của đa giác đều.

Ta có \[\frac{{\left( {n - 2} \right).180^\circ }}{n} = 135^\circ \]

nên \[\frac{{n - 2}}{n} = \frac{{135}}{{180}} = \frac{3}{4}\].

Do đó \[4\left( {n - 2} \right) = 3n\].

Vậy \[n = 8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP