Cho một hình lục giác đều và một hình vuông cùng nội tiếp một đường tròn. Biết rằng hình vuông có cạnh bằng 3 cm. Tính chu vi và diện tích của một hình lục giác đều đã cho.
Quảng cáo
Trả lời:

Ta có tam giác \(AOB\)vuông tại \(O\). Theo định lí Pythagore, ta có: \(O{A^2} + O{B^2} = A{B^2}\)
hay \({R^2} + {R^2} = 9\)\( \Leftrightarrow 2{{\rm{R}}^2} = 9 \Leftrightarrow {{\rm{R}}^2} = \frac{9}{2} \Rightarrow {\rm{R}} = \sqrt {\frac{9}{2}} = \frac{{3\sqrt 2 }}{2}(\;{\rm{cm}})\)
Ta có cạnh của hình lục giác đều bằng bán kính đường tròn ngoại tiếp.
Gọi \(P\) là chu vi của hình lục giác đều, \(P = 6.\frac{{3\sqrt 2 }}{2} = 9\sqrt 2 (\;{\rm{cm}})\)
Xét tam giác đều \(KOI\) cạnh \(R = \frac{{3\sqrt 2 }}{2}\) nên đường cao \(ON = OK.\sin \widehat {OKN} = \frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2}\).
Do đó diện tích tam giác \(KOI = \frac{1}{2}.\frac{{3\sqrt 2 }}{2}.\frac{{3\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} = \frac{{18\sqrt 3 }}{8}\left( {\;c{m^2}} \right)\)
Tích tam hình lục giác đều là: \(S = 6.\frac{{18\sqrt 3 }}{8} = \frac{{27\sqrt 3 }}{2}\left( {\;c{m^2}} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có (1). Lại có \(Ax \bot Ay\) nên
Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.
\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)
b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay . Dễ thấy tứ giác \[ABMO\] có
nên \[ABMO\] là tứ giác nội tiếp.
Lại có , chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.
c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)
\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.
Lời giải

a) Ta có \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ADC}}}\) (góc nội tiếp cùng chắn cung ). Lại có ( \(AD\) là đường kính)
Do đó (g.g)
b) \( \Rightarrow AH = \frac{{AB.AC}}{{AD}} = \frac{{AB.AC}}{{2R}}\)
Do đó \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}\frac{{AB.AC}}{{2R}}.BC = \frac{{AB.AC.BC}}{{4R}} = \frac{{abc}}{{4R}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
